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Abstract

This essay provides coherent definitions of two bedrock concepts in philos-
ophy and statistics: randomness and probability. When constructing the first, I
define repeatability, the measurement set, and distinguish between frequency vs.
value prediction. The definition of randomness proposed, namely of a random
variable not being perfectly value-predictable for any given information set, is
stronger than those commonly used in the literature. Second, after defining prob-
ability as a theory about a variable’s potential frequency distribution, I argue that
the dichotomy between frequentist and bayesian interpretations is illusory. I con-

clude with remarks about knowledge and determinism.



I Introduction

In this essay I provide definitions for these two terms that are both coherent and based
purely on simple empirical notions'. While working the way up to the main ideas, I
also define auxiliary but useful concepts, such as repeatability, the measurement set,

scope and measurement uncertainty, frequency vs. value prediction, among others.

Clarifying the meaning of randomness not only improves our understanding of
key ideas in statistics, but also contributes to making a substantive philosophical claim.
The definition developed below, namely of a random variable not being perfectly
value-predictable for any given information set, raises the bar for refuting determin-
ism. In particular, it shows that insufficient information and knowledge may disguise

determinism as perceived randomness.

Moreover, the framework laid below helps undo an old interpretation divide about
probability, held between frequentists and bayesians. I define probability as a theory
about a variable’s potential frequency distribution, which can be measured or not, de-
pending on the variable’s degree of repeatability. This helps clarifying that probability
can be both a property of the object and of the observer.

This essay proceeds as follows. In Section II I define randomness after laying the
necessary logical groundwork. In Section III I discuss why the probability-as-theory
definition breaks the dichotomy of standard interpretations. Section IV concludes.

I Randomness

Our first goal is to define the term "randomness". In search for clarity, I start from
tirst principles and move forward step by step. For simplicity of exposition, I keep

mathematical notation to a necessary minimum.

Definition 1. A variable is a correspondence f : © — Y.

We define a variable in abstract, to allow for a logical representation of real-world
variables. Examples are the a coin toss, the inflation rate observed next month, our
mental mood after breakfast, and so on. First, notice that a variable is a correspon-
dence, and not necessarily a function. Second, it maps the set of parameters © into a
set of outcomes Y.

The set ® has finite L dimensions. Each element 6§ € © describes the relevant
parameters, or characteristics, or conditions, or context, or "state of the world", of the

variable. Fully describing these for any particular variable may be cumbersome, if not

!In basic probability theory, these are constructed from complicated mathematical ideas, such as
sigma-algebras or the Axiom of Choice.



impossible. As an example, the set of parameters describing a coin toss contains the
coin’s weight, wind speed, the person’s hand position, the surface’s inclination, etc.
Moreover, a variable takes values, or outcomes, y € Y. The set Y may be finite or not,
and may contain symbols, numbers, or letters. The relevant outcomes for a coin toss
are Y = {heads, tails}. For economic growth next year, outcomes are all real numbers
R.

Definition 2. The measurement set Mg is a set containing subsets of ®, such that every
f € O isin at least one m € Mg.

This set represents how finely one can observe parameters. Coarseness may re-
sult, for example, from imperfect measuring instruments, or from complexity in even
understanding what the relevant dimensions are. For example, when tossing a coin,
one’s instruments for measuring wind speed may be precise only up to 0.5 km/h.
Or, when measuring cultural traits, it might not be straightforward to know what to

measure.

Definition 3. A draw, roll, experiment, realization or observation, is an instantiation of a
variable. It is represented by f at a specific parameter measurement, i.e. f(m).>

There are several types of uncertainty associated with variables, some of which are
discussed in previous literature (Knight, 1921; Zeckhauser, 2010).> To avoid confu-
sion created by bad terminology, I have rephrased several terms to fit the framework
introduced above.

First, there is outcome uncertainty, when a variable’s probabilities are known, but
not the outcome y € Y of each specific realization (named risk in the literature). Sec-
ond, there is probability uncertainty, when probabilities are unknown (named simply
uncertainty in the literature). Third, there is parameter uncertainty, when the state of
the world 6 € © is unknown (also called ignorance in previous literature). I introduce
two new important types of uncertainty. There is scope uncertainty, when one does
not know what the relevant dimensions of © are. Additionally, there is measurement
uncertainty, when one observes a measurement m € Mg, but not the specific 6 € m

generating the variable’s realization.

Definition 4. A variable’s degree of repeatability, or degree of controllability, is a measure
of how fine Mg is. It is abstractedly represented by c; : Mg — [0, 1].

This measures both how well can one can observe parameters, and how well one

can hold conditions constant across draws. Some simple properties follow. A variable

2Here I abuse notation. It could be that f(8) = f(8") V6,6’ € m, or simply that one cannot empirically
differentiate what 6 € m corresponds to f(m).

3Some of the concepts mentioned in this paragraph, such as prediction and probability, will only be
properly defined in later paragraphs.



is not repeatable when Mg = @, with c;(Mg) = 0. A variable is perfectly repeat-
able when Mg is a partition of ©® containing only singletons, with cf(Mg) = 1. Any
two variables f and f’ may be compared with c¢; and cy. Two examples are (1) dice
rolling, which is in principle highly repeatable, and (2) a given historical war, which is

virtually unrepeatable, given how specific and complex the context of such events are.

Definition 5. An empirical relative frequency (ERF) is the share of observed realizations
equal to a certain outcome, for a given number of draws n and a measurable set of

parameters m € Mg. Formally, write p,(y|m) = 1 Y1, 1[f(m) = y].

Definition 6. An empirical relative distribution (ERD) is the vector of ERFs across values
of y € Y for a given m € Mg. It is represented as ERDy : Mg — [0, 1].

Some remarks follow. First, the ERF and ERD are not meaningful for variables that
are not repeatable, i.e. when n = 1. Second, counting frequencies does not inform us

on why the variable behaves the way it does.

Until this point, we discussed only properties of variables that are objective, or
external to human affairs. Now, let us move to how agents interact with variables.

Definition 7. A theory, information set, or hypothesis, is a set of claims with propositional

value.

Such statements may be measurements of the environment (be it quantitative or
qualitative). It may contain not-necessarily-true, or even unverifiable, claims. It may

also be incomplete. *

A theory makes predictions, and one may summarize the former into a function
¢ : ® — Y. A theory may make sense only for a subset of ®°, and predictions may
be wrong (i.e. not corresponding with observation, or nature, or the variable’s out-
come). In particular, theories can generate two types of prediction, in ascending order

of strength.

Definition 8. Frequency prediction is a statement about a variable’s ERD, for a given n

and conditions measurement 1, and represented as fp, : Mg — [0, 1]eard(Y),

Definition 9. Value prediction is a prediction for a variable’s next realization, and is

possible when g is a function (not a correspondence). In this case, it is written simply
as g(m).0

The distinction among types of prediction motivates a distinction between two

types of accuracy.

4See Dahis (2018) for a more complete exposition on theories and their properties.

>Newtonian physics makes sense only for the not very small, or very big, or very fast, or very slow.

®A more general definition would allow for g to be a correspondence. In this case, for each m, the
prediction would also include a frequency prediction for each y € g(m).



Definition 10. Frequency accuracy is the difference between a theory g’s frequency pre-
diction and the observed ERD, for a given n. It may be defined for a fixed m, as

fan(m) = |fpg(m) — ERDf(m)|, or across Me, as ¥ mg fan(m) fan(m).

Definition 11. Value accuracy is the difference between a theory g’s value prediction

and the variable’s realization, for a given n. It may be defined for a fixed m, as

0 () = L, 1gn(m) — fu(m)], or actoss Me, as Lo 0 ().

Two remarks here. First, naturally, a theory’s accuracy is always relative to the vari-
able’s degree of controllability. Even holding a theory’s claims constant, it may sud-
denly become more accurate after better measurement instruments are introduced.
Moreover, perfectly accurate theories are consistent with measurement uncertainty.
We may be able to predict outcomes for any given m even if not knowing what partic-

ular 6 € m generated it.

Before I introduce a definition of randomness, we need a final pair of definitions

about predictability.

Definition 12. A variable is J-frequency-predictable if there exists a theory g such that
fan(m) > 6 for a given m, or such that Y,,c 1, fan(m) fan(m) > & across Me.

Definition 13. A variable is §-value-predictable if there exists a theory g such that va, (m) >

d for a given m, or such that Y-, ¢y, van(m) > 6 across Meg.

Notice the following. First, we may loosely refer to a variable as J-predictable, not
differentiating frequency vs. value. Second, predictability, through the definition of
accuracy, depends on the number of realizations 1 observed” and the measurement
set Mg. Third, as with accuracy, variables may be more or less predictable for differ-
ent values of measurements m. Fourth, uninformed theories may predict frequencies
successfully as n grows, but rarely do so when n is small. Fifth, one could propose
more sophisticated measures of predictability, e.g. one that accounted for continuous
variables and that computed numerical errors between prediction and observations.
For simplicity of exposition I maintain a true vs. false measure. Sixth, we can label a

variable as predictable if is is 100% (frequency- or value-) predictable.

Definition 14. A demarcating information set (DIS) is the smallest, or weakest, set of

claims necessary for a given §% of predictability.

Notice, naturally, that, for a given level of predictability, there may still be larger,
or stronger theories available. These may yield the same prediction accuracy, or even

"This provides a simple representation of Hume’s problem of induction. Predictive theories may
perform well only with the observations recorded so far, but there is no guarantee they would continue
to do so in future realizations.



more. One obvious case is the uninformed theory, which delivers good frequency-
prediction by definition.

We are finally ready to introduce a meaningful definition of randomness.

Definition 15. A variable is random, or not value-predictable, if there exists a € © such

that there is no theory ¢ that makes value-predictions with 100% accuracy.

In other words, true randomness means that one cannot, in principle, predict the
next realization of a variable with perfect accuracy. Moreover, there is no amount of
information about the current state of conditions, or about the present, that allows one

to predict the next event. A couple interesting points can be brought to bear.

First, a variable may be 100% frequency-predictable and still be random. As dis-
cussed above, trivially, uninformed theories may result in great frequency-accuracy,

but still be empty of true knowledge of how a variable is determined.

Second, we cannot prove that a variable is random. All we can safely say is that a
variable is currently not-value-predictable. The appropriate analogy is with statistical
hypothesis testing. One may assume a variable to be random as a null hypothesis,
and then search for enough evidence to the contrary. Besides, we may not even know
what potential information sets exist. Our knowledge of the Universe is limited and

imperfect.

Third, perhaps unintuitively, it is not possible to compare levels of randomness.
Randomness is a discrete property of variables. Nevertheless, one may compare levels
of predictability. Different measures exist, but some common ones are the following.
A variable is more predictable than another if (1) it takes a smaller information set to
predict it at a same level of accuracy, or (2) given the same information set, one can
predict it more accurately than the other.®

Fourth, as indicated above, there are several qualifications of predictability. A vari-
able may be currently not predictable if we currently do not have theories that generate
suitable accuracy. A variable may be predictable in principle if we know a theory exists
that provides perfect predictability, but it simply is too costly to calculate it (for data
availability or computational issues). Finally, a variable may be already predictable if

we currently know its demarcating information set.

Fifth, there are weaker definitions of randomness which are commonly found in
the literature. For example, one may define a variable as random if 100% value-
predictability is impossible for all 6 € ©. Put it differently, a variable would not be ran-
dom if perfect value-predictability is possible for some 6 € ®, which is much weaker
than the definition given above. Additionally, there are pseudo-random numbers.

These are deterministically generated, but result from such complicated algorithms

8 A concrete concept in mathematics on this topic is stochastic dominance.



that value-prediction becomes virtually impossible.

III Probability

With this framework in place, we can proceed to tackle an old problem in statistics,
namely how to interpret probability.” The two most common views imply an apparent
irreconcilable dichotomy. Let us discuss each view in more detail and then argue that
this dichotomy is a false one. I will argue that both interpretations are consistent with

the ability to make value-predictions.

Frequentists interpret probability as a variable’s ERF for large n — sometimes fixing
m and sometimes not. According to this view, probability is a property of the object. It
is what would happen if only we could repeat many draws of the same variable. The
numbers used for the probability of each event are abducted from observation, and

not known a priori.

The problem with frequentism is obvious: how to make sense of probability for
variables that are not repeatable? What would it even mean to think of re-rolling the
dice of history? How can one repeat an election that has just come to pass? And would
we expect different results? Such events may be virtually random, since predicting it
is difficult, and also not-repeatable, but one could potentially do away with notions of
probability in such cases.

On the other hand, Bayesians interpret probability as a subjective belief about out-
comes of events, which can be updated via Bayes rule as more evidence is accumu-
lated. In this case, probability is a property of the observer. A famous concept in
Bayesian statistics is the Principle of Indifference, or the Principle of Insufficient Rea-
son, which assigns an uninformed prior (or theory) to a variable’s outcomes Y when

no information is available.

Here I would like to make two important points. First, nothing in the discussion
above depends on the relevant variables being truly random. Statements about prob-
ability, be it seen as an objective or subjective measure, are simply claims about fre-
quencies. In practice it may make little difference whether something is random or
not. Dealing with levels of predictability alone is sufficient to build whole fields of

knowledge around statistics.

Second, however, philosophical precision matters. So I propose a definition of

probability that is consistent with both views, and undoes the apparent dichotomy.

Definition 16. Probability is a theory, or claim, or statement of fact, about a variable’s

9The history of interpretations of probability is long and interesting. For more detail, see Hajek
(2012).



frequency distribution.

As any other theory, statements about probability may be true or false, in the cor-
respondence sense. Probability is an abstraction, which describes a property of vari-
ables if repeated countless times. Repetition, however, is not always feasible. When
it is, probability claims may be directly tested, if measurement conditions are good
enough. In other words, a probability claim may be taken as a property of the object,
if one supposes the statement to be true. On the other hand, it may also be taken as a
property of the observer, in the sense of theories being held as beliefs by agents. More-
over, an observer may update its statement of probability as new evidence is collected,

just as one does with any other (scientific) theory.

IV  Concluding Remarks

In this essay I attempt to provide coherent definitions of randomness and probability.
To do so, it was necessary to slowly build vocabulary and to dispel common myths and
confusions around terms. An advantage of this construction is to deliver all necessary
intuition in a precise manner, with no recourse to abstract concepts such as sigma-
algebras, data-generating processes, etc. I close with miscellaneous remarks on related
topics.

A good measure of how much knowledge we have is how well we can predict
events. And having predictive power is a necessary condition for a theory, or informa-
tion set, to be true. Obviously, other properties also matter, such as being verifiable,
realistic, etc. (Dahis, 2018).

On a separate note, the arguments developed in this essay raise the bar for refut-
ing the concept of determinism, which states that events are determined by previous
causes. Since determinism is only opposite to true randomness, and since most of what
we commonly deem random is simply unpredictability caused by lack of information,

then the burden of proof for refuting determinism is with those arguing against it.
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