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reforestation among punished farmers and their neighbors. Heterogeneity anal-

ysis reveals that even sanctions with limited incapacitation potential elicited rel-

evant behavioral changes. In particular, farmers’ responsiveness to sanctions co-

incided with the government’s commitment to enforcement. We do not find sub-

stantial evidence of spatial displacement or monitoring evasion. Overall, sanctions

prevented 1.6 billion tons of CO2 emissions between 2006 and 2019, equivalent to

31% of US emissions in 2021.
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1 Introduction

Deforestation generates a range of negative externalities. Globally, it significantly con-

tributes to climate change, accounting for 20% of annual greenhouse gas emissions

(Gullison et al., 2007). Regionally, it reduces rainfall and negatively impacts agricul-

tural production (Lawrence and Vandecar, 2015; Araujo, 2022). Locally, it threatens

biodiversity and the livelihoods of local communities (Gandour, 2021). Governments

rely on conservation policies to align agents’ deforestation decisions with their social

costs and combat excessive extraction. However, weak state capacity often hinders

these efforts, particularly in developing countries where deforestation is more preva-

lent (Jayachandran, 2022; Balboni et al., 2022).

There is a growing body of knowledge on the direct impacts of conservation poli-

cies on deforestation, such as payments for ecosystem services (Jayachandran et al.,

2017), conditional rural credit (Assunção et al., 2020), land titling programs (Probst

et al., 2020), and command-and-control actions (Assunção et al., 2022a). Nevertheless,

our understanding of potential spillover effects and underlying mechanisms driving

behavioral changes in response to these policies remains scarce.

This paper aims to fill this gap by examining the role of sanctions and spillovers in

influencing farmers’ forest change decisions. Specifically, we investigate the effects of

environmental sanctions on curbing deforestation and promoting reforestation among

punished farms and their neighbors in the Brazilian Amazon. The hypothesis is that

farmers exposed to punishment reduce their demand for deforestation and deforested

land due to incapacitation through losses of deforestation-specific capital and deter-

rence through updates to the expected cost of violating forest laws. To investigate

these mechanisms, we analyze the spatial spillovers, which help isolate the informa-

tional channel characterizing deterrence. Additionally, we explore the heterogeneous

effects of sanctions with varying incapacitation potential and examine how farmers’

responsiveness to sanctions varies with changes in the government’s commitment to

enforcing forest conservation laws.

The Brazilian Amazon provides a unique setting for studying this topic for several
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reasons. Farms account for 53% of the Amazon’s deforestation, providing a large-scale

context to observe individual behavioral responses.1 Punishment primarily targets

recurrent offenders with high and increasing deforestation rates but still possessing

substantial forested areas. Moreover, it is important to note that strict conservation

requirements render nearly all deforestation in the region illegal.2

In the mid-2000s, the Federal Government of Brazil implemented a series of poli-

cies to combat the escalating deforestation rates.3 On one hand, there was a remarkable

80% decrease in deforestation between 2004 and 2012 (see Figure A.1), with causal ev-

idence indicating that the implementation of the System for Real-Time Detection of

Deforestation (DETER),4 along with intensified actions to curb illegal deforestation5

were key drivers in this process (Gandour, 2021). On the other hand, only 7% of farms

with deforestation received any punishment, 13% of deforested areas received a fine

in the same year (Ferreira, 2023), and 10% of fines were paid (Schmitt, 2015). In light

of these observations, we hypothesize that sanctions and spillovers on neighboring

farms help explain this apparent contradiction by changing the behavior of multiple

agents in deforestation hot spots.

To estimate the average treatment effects for each group of treated farms, we com-

bine novel spatial data at the farm-year level with a staggered difference-in-differences

framework that exploits the timing and location of environmental sanctions between

2000-2021. Specifically, we compare the average outcome evolution for each treat-

ment cohort in a year to the average evolution across all never-punished farms. These

comparisons are similar to applying a canonical two-period/two-group difference-

in-differences estimator separately for each treatment cohort and year (Callaway and

Sant’Anna, 2021). We use georeferenced punishment information from Brazil’s pri-

1The remaining 47% of deforestation occurs in indigenous lands, protected areas, rural settlements,
quilombos, military areas, and undesignated public forests where multiple actors contribute to forest
changes, making it challenging to isolate direct and spillover punishment effects.

2Forest laws requiring at least 80% of forest cover on private properties have been in place since 1996.
3These policies were implemented under Brazil’s Action Plan for the Prevention and Control of Defor-
estation in the Legal Amazon (PPCDAm), launched in 2004.

4A near-real-time satellite monitoring system from Brazil’s National Institute for Space Research (INPE).
5The number of sanctions per deforested area increased approximately nine-fold from 2004 to the peak
in 2009, as shown in Figure A.1.
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mary environmental agency, the Brazilian Institute for the Environment and Renew-

able Natural Resources (IBAMA, 2022), high-resolution forest change outcomes from

the MapBiomas Project (MapBiomas, 2021), high-resolution carbon stock data from

Global Forest Watch (GFW, 2022), and farm boundaries from the Atlas of Brazilian

Agriculture published by the Institute of Forestry and Agricultural Management and

Certification (Freitas et al., 2018).

Our analysis shows that environmental sanctions are effective in curbing deforesta-

tion and promoting reforestation. Punished farmers decrease deforestation by 49%,

while adjacent neighbors decrease it by 21%. Furthermore, farmers increase refor-

estation by 13% and 7%, respectively. These effects persist for at least five years after

punishment. In terms of the underlying mechanisms driving these changes, we find

suggestive evidence that deterrence is relevant. The spillover effects suggest that sanc-

tions increase the perceived risk of violating forest laws among farmers who witness

the punishment of adjacent neighbors. The heterogeneity by type of sanction shows

that even standalone fines with the lowest potential for incapacitation cause large be-

havioral changes. Additionally, heterogeneity over time shows that farmers’ respon-

siveness to environmental sanctions decreases as the government’s overall commit-

ment to forest law enforcement deteriorates, indicating that farmers may not update

their perceived risk of punishment when they encounter mixed signals regarding law

enforcement efforts.

Next, we investigate whether farmers react strategically to circumvent forest law

enforcement. To this end, we explore two potential strategies: attempts to evade

satellite monitoring by deforesting below detection limits and spatial displacement

to avoid targeted areas. Our findings show that all deforestation types reduce in re-

sponse to a sanction, regardless of the monitoring degree. Furthermore, we expand the

possible range of spillover effects by including non-adjacent neighbors within three

distance rings (<10km, 10km-50km, 50km-200km). We find significant reductions in

deforestation among adjacent and non-adjacent farms up to 10 kilometers away (84%

of neighbor farms), no effects between 10-50 kilometers (15% of neighbor farms), and
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a noisy increase between 50-200 kilometers (1% of neighbor farms). These results indi-

cate that changes in deforestation patterns and spatial displacement are not significant

strategic response margins in this context, increasing the aggregate effectiveness of

command-and-control policies.

We perform several robustness checks to validate our results. To account for pun-

ishment selection based on rising pre-trends and relax the parallel trends assumption,

we use three complementary strategies. First, we control for the pre-treatment lagged

outcome dynamics to reduce the risk of selection bias and regression to the mean ef-

fects (Acemoglu et al., 2019; Dube et al., 2023). Second, we use linear extrapolations

of the pre-trends as an alternative counterfactual trajectory, following (Rambachan

and Roth, 2023) partial identification methods to conduct inference. Third, we use a

within municipality-by-property-size groups estimator to avoid potential confound-

ing effects from municipality- and property size-specific policies. Fourth, we check

if forest scarcity generates mechanical results. Fifth, we analyze heterogeneity across

property types and test alternative outcome transformations. Finally, we change the

control group from never-treated to late-treated farms.

To assess the overall impact of sanctions, we construct a counterfactual scenario

where no sanctions were issued between 2005-2018. Our findings indicate that farm-

ers’ deforestation would have increased by 48% relative to what was observed be-

tween 2006-2019, suggesting that the existence of sanctions saved 2.268 million hectares

of forest and avoided 1.599 billion tons of CO2 emissions, equivalent to 31% of US

emissions in 2021 (Friedlingstein et al., 2022). These results provide insights into how

sanctions and spillovers can be a powerful tool for improving forest conservation on

a large scale, changing farmers’ behavior, and overcoming Amazon’s low punishment

and fine collection rates.

Our paper makes contributions to two strands of literature. First, we contribute to

the literature on law enforcement and spillovers. There is growing recognition in the

environmental policy literature of the importance of accounting for spillovers in pol-

icy evaluations (Pfaff and Robalino, 2017). In the crime literature, there is an ongoing
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debate about whether targeted law enforcement deters or displaces crime. On the one

hand, a review by Braga et al. (2019) highlights that most studies find reductions in

crime both in targeted areas and their surrounding areas. On the other hand, Blattman

et al. (2021) argue that there is mixed evidence on the direction of spillovers, with many

studies suffering from low statistical power. Also, their large-scale randomized con-

trolled trial shows that intensifying state presence has modest direct effects on crime

and leads to crime displacement to nearby streets. In other contexts, Banerjee et al.

(2019) and Gonzalez-Lira and Mobarak (2021) have shown that agents can learn and

react strategically to targeted enforcement, reducing effectiveness.

We add to this literature by analyzing spillovers from field-based environmental

sanctions in a developing country, observing illegal deforestation events across the

entire Brazilian Amazon biome under the same regulation and monitoring system.

We provide evidence against strategic reactions to enforcement by showing no spatial

displacement of deforestation to less targeted areas among 99% of the farms. We also

find no evidence of substitution towards less monitored types of deforestation.

Second, we add to the literature on conservation policies and farmers’ forest change

decisions. While previous studies have examined the direct effects of various policies

on these decisions, including payments for ecosystem services (Jayachandran et al.,

2017), conditional rural credit (Assunção et al., 2020), land titling programs (Probst

et al., 2020), and command-and-control actions (Assunção et al., 2022a), there is limited

understanding of the potential spillover effects and the specific mechanisms through

which these policies influence behavior. Previous studies on the Brazilian Amazon

find that enforcement effectively curbs deforestation at the municipal level but do

not delve into the underlying mechanisms of deterrence and incapacitation (Assunção

et al., 2022b,a). Studies at the pixel level improve data granularity but cannot identify

individual behavioral responses regarding deforestation (Börner et al., 2015; Burgess

et al., 2019; Ferreira, 2023) or reforestation (Assunção et al., 2019).

We contribute to this literature by being the first study, to the best of our knowl-

edge, to examine the relationship between environmental law enforcement and forest
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change decisions at the farm level. This allows us to track and analyze the behav-

ioral responses of individual farmers, including the examination of spillover effects

on neighboring farms. By doing so, we gain a deeper understanding of the mecha-

nisms driving these decisions and shed light on how environmental sanctions have

effectively reduced deforestation, despite the low rates of punishment and fine pay-

ments observed in the Amazon region. Furthermore, our study distinguishes itself by

utilizing more detailed forest change data from MapBiomas (2021). This richer dataset

enables us to estimate the impacts of environmental sanctions on both deforestation

and reforestation, even among small-scale farms. Additionally, we are able to examine

potential strategic reactions across different types of deforestation with varying levels

of monitoring. We also incorporate high-resolution carbon stock data to translate im-

pacts on deforestation area into CO2 emissions.

The remainder of the paper proceeds as follows. Section 2 discusses the institu-

tional context, focusing on deforestation and law enforcement characteristics in the

Brazilian Amazon. Section 3 describes the data and presents descriptive statistics.

Section 4 details the staggered difference-in-differences empirical strategy. Section 5

presents the results and discusses mechanisms. Section 6 presents the counterfactual

exercise to assess the aggregate impact. Section 7 concludes with the main takeaways

and policy implications.

2 Institutional Context

2.1 Deforestation in the Brazilian Amazon

The Brazilian Amazon is one of the world’s most important forests in terms of its

biodiversity and its role in regulating the global climate. Despite the stringent envi-

ronmental laws aimed at conserving the forest,6 deforestation in the region has been a

major issue, driven primarily by agricultural activities and illegal land grabbing (Gan-

6They prohibit deforestation inside protected areas (conservation units and indigenous lands) and re-
quire the conservation of at least 80% of private property’s native vegetation.
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dour, 2021).7 In most cases, deforestation is considered an environmental crime,8 but

offenders often remain in the area to collect benefits, hoping not to be punished.

In 2004, Brazil’s Federal Government launched PPCDAm, an integrated plan aimed

at improving forest law enforcement and curbing the rise in deforestation.9 The plan

included several key components, such as creating a near-real-time satellite monitor-

ing system (DETER), using new enforcement sanctions, adding conservation require-

ments for rural credit, targeting actions with a list of priority municipalities, and ex-

panding protected areas. These efforts resulted in an 80% reduction in deforestation

rates in Brazil within a decade.10

However, a significant fraction of deforestation was not punished, and the political

momentum pro-conservation was short-lived. For instance, only 7% of farms with

deforestation received any punishment, 13% of deforested areas received a fine in

the same year (Ferreira, 2023), and 10% of fines were paid (Schmitt, 2015). Further-

more, deforestation rates reversed in 2012 and started increasing again, coinciding

with an economic crisis and weakening environmental efforts under political pressure

(Burgess et al., 2019).

In 2012, the revision of the Forest Code resulted in an amnesty of past illegal de-

forestation for 90% of private properties (Burgess et al., 2019). There were also cuts in

the leading environmental agency with reductions in the overall budget (20% between

2014-2020), the operational expenditures in the Amazon (40% between 2014-2020), the

number of enforcement officers (Burgess et al., 2019), and the number of sanctions per

deforested area (56% between 2012-2019, see Figure A.1).

2.2 Environmental Law Enforcement

In Brazil, environmental law enforcement is a shared responsibility among municipal,

state, and federal governments. However, IBAMA has taken on most of the respon-
7Around two-thirds of deforested areas are converted to pasture for cattle grazing (Gandour, 2021).
8Azevedo et al. (2022b) estimate that more than 99% of the deforestation area was illegal between 2019
and 2021.

9For a more detailed overview of the plan, refer to Gandour (2018).
10For a summary of studies that provide evidence supporting the causal link between environmental

policies and the decline in deforestation, see Gandour (2018).
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sibility since its creation in 1989, particularly regarding monitoring, inspecting, and

punishing deforestation in the Amazon. IBAMA is also responsible for enforcing other

environmental laws related to pollution, animal trafficking, and predatory fishing.

To carry out its law enforcement duties, IBAMA must know where the infractions

happen. The agency uses multiple sources of information such as anonymous com-

plaints, intelligence reports, patrolling, and checkpoints (Schmitt, 2015). DETER was a

game changer in providing information because it issues georeferenced deforestation

alerts in near-real time and covers the full extent of the Brazilian Amazon primary

tropical forests. Hence, it improved IBAMA’s detection capacity and allowed faster

and better-targeted responses (Assunção et al., 2022a).

After detecting potential infractions, IBAMA relies on field operations with sup-

port from other actors, such as the federal and state police, to inspect and punish the

offenders. When there is evidence of illegal deforestation, an officer writes an infrac-

tion notice identifying the offender, describing the violation, specifying the legal basis,

and suggesting a fine value. The infraction notice is only a communication for the of-

fender that the State will open an administrative process against him. After the notice,

the competent judging authority analyzes the process and decides whether or not to

maintain the fine. To prevent further deforestation and enable reforestation, the officer

may impose additional penalties such as embargoes in designated areas and seizure

or destruction of equipment or products related to the illegal activity (Schmitt, 2015).11

These administrative sanctions increase the cost of deforestation for offenders. Even

if the offender does not pay the fine, he must still go through the administrative pro-

cess, which can be time-consuming and may require hiring a lawyer. Additionally,

having embargoed areas can increase the punishment severity in cases of recidivism

and lead to credit restrictions through Central Bank’s Resolution 3,545, which added

environmental requirements for lending rural credit. The financial losses can be sig-

nificant and immediate with the seizure and destruction of equipment and products.

The offenders can also be criminally investigated and prosecuted.

11See Schmitt (2015) for a more detailed description of the sanctioning administrative process and
IBAMA’s actions.
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3 Data

To conduct the empirical analysis, we construct a panel dataset at the farm-year level,

covering all private properties in the Brazilian Amazon from 2000 to 2019. Our pri-

mary data sources include novel spatial information on deforestation, reforestation,

and forest carbon stock. We also rely on administrative records of environmental sanc-

tions from IBAMA, Brazil’s leading agency responsible for enforcing environmental

laws. All of the data are publicly available.

3.1 Unit of Analysis: Farms

Data on private properties comes from the Institute of Forestry and Agricultural Man-

agement and Certification (Imaflora)’s Atlas of Brazilian Agriculture (v.1812) (Freitas

et al., 2018), which gathers and harmonizes the most up-to-date land tenure informa-

tion from 18 official sources based on a cross-section of 2018.12 We focus on farms as the

unit of analysis because they have a single individual responsible for the land. This

allows us to track agents’ behavioral responses over time by looking at the changes

occurring inside the property.13

We extract the farms’ boundary, area, size (small, medium, or large),14 and type

(registered in the National Institute for Colonization and Agrarian Reform (INCRA),

self-declared in the Environmental Rural Registry (CAR), or regularized in the Terra-

Legal program). We view self-declared farms as essential to avoid observing only

those with formal titling that may be less engaged in environmental crimes. In total,

there are 365,682 farms, occupying 96 million hectares (23% of the Amazon’s area) and

responsible for 53% of the Amazon’s deforestation.

A limitation of the data is the lack of occupation dates, which prevents us from

12The compilation covers 82.6% of the country (Freitas et al., 2018) and uses a hierarchical approach to
deal with spatial overlaps across sources.

13In public areas, multiple agents are responsible for a single land, and changes due to outsiders are more
common than in private properties.

14Size categories are defined based on the official metric of fiscal modules that vary across municipali-
ties. A fiscal module is a minimum area needed to ensure the economic viability of exploring a rural
establishment in a Brazilian municipality (Assunção et al., 2017). Small farms have less than four fiscal
modules, medium 4-15, and large more than 15.
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tracking possible changes in tenure or ownership. Therefore, we assume tenure sta-

bility during our sample period for the main analysis. Moffette et al. (2023) provide

evidence in favor of this assumption by showing that only 0.51% of properties be-

tween 2019-2020 were transacted. In robustness exercises, we separate properties by

size, type, and intersection with undesignated public forests to check if a subset of

the farms, more subject to tenure changes, drives the effects. For example, the reg-

ularization process in the Terra Legal program began in 2009, although there was a

requirement for active occupation before 2004. Moreover, an overlap with undesig-

nated public forests indicates potential cases of illegal land grabbing.

3.2 Outcomes: Deforestation and Reforestation

Data on deforestation and reforestation comes from Mapbiomas, which generates land

use and land cover annual maps with 30m pixel resolution from 1985 to 2020 (Map-

Biomas, 2021).15 A deforestation event occurs when a pixel changes its classification

from a Natural category to an Anthropic one, and a reforestation event occurs when an

Anthropic category changes to a Natural one. Spatial and persistence criteria are used

to avoid false positives, removing transitions smaller than 1 hectare and initial/final

years.16 We also include an additional filter removing non-tropical forest areas (INPE,

2017). We observe the universe of tropical forest change events measured by an inde-

pendent initiative, which allows us to avoid the usual reporting issues in measuring

illegal behaviors.

We extract the total deforestation area of primary forests17 by farm-year from 2000

to 2019, and the total reforestation area from 2000 to 2018. We also divide the defor-

estation area into different categories based on the monitoring degree: small polygons

below 3 ha, which are never monitored; medium polygons between 3-25 ha, which are

15MapBiomas Project - is a multi-institutional initiative to generate annual land use and cover maps based
on automatic classification processes applied to satellite images. The complete project description can
be found at http://brasil.mapbiomas.org.

16For deforestation, the pixel has to persist as Natural at least two years before the change and persist as
Anthropic at least one year after the conversion (1987-2019). For reforestation, the pixel has to persist
as Anthropic at least two years before and as Natural at least three years after (1987-2018).

17Primary forest is a forest with no previous deforestation, at least since 1987.
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monitored after 2015; large polygons above 25 ha, which have been monitored since

2005; and secondary vegetation polygons, which are never monitored or measured by

the official systems. We also extract the primary forest area from 2000 to 2019.

To translate deforestation area to CO2 emissions, we incorporate high-resolution

aboveground biomass data from Global Forest Watch (GFW, 2022). We spatially match

the biomass density data with the deforestation polygons and transform to CO2 emis-

sions by multiplying by the polygon area, dividing by half (carbon stock represents

50% of the biomass), and multiplying by 3.67 (carbon dioxide (CO2) mass is equiva-

lent to 3.67 of carbon (C) mass).

To account for variations in property size and include responses from both the

extensive and intensive margins, we normalize the raw measures using the inverse

hyperbolic sine (IHS) transformation. We also explore alternative measures, such as

an indicator for the occurrence of the event (extensive margin), the log transformation

removing observations with zero areas (intensive margin), the division by property

areas (alternative normalization), and the raw measures with no normalization.

3.3 Treatment: Environmental Sanctions

IBAMA’s public administrative records provide data on environmental sanctions, in-

cluding fines, embargoes, and seizures (IBAMA, 2022). Among directly punished

farmers: 70% receive a fine plus an embargo, 14% only a fine, 9% all sanctions, and

7% a fine plus a seizure.

We combine and aggregate all deforestation-related sanctions at the farm-year level

from 2000 to 2021, constructing three mutually exclusive treatment groups: the Direct

group, based on the first year a farm receives any sanction; the Adjacent group, based

on the first year an adjacent neighbor receives any sanction; and the Direct & Adjacent

group, based on the first year a farm and an adjacent neighbor receive any sanction.

We also separate farms with different combinations of sanctions in a heterogeneity

exercise. We define the cohorts by the first year of exposure because 77.5% of the

farms are directly punished only once, while 16% are punished twice, 4% three times,
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and 2.5% at least four times.

At the beginning of the sample period, some farms lack precise spatial coordinates,

as shown in Table A.1. This absence restricts our ability to match sanctions to farms

for these years and can attenuate our estimates because we may have control units

with non-observed treatment. Therefore, we use data from 2000 to 2004 to identify

punishments before the satellite monitoring began but only consider treatment cohorts

starting in 2005 after the start of PPCDAm and when the number of farms was larger.

3.4 Sample Selection

We start with all the 365,682 farms in the Brazilian Amazon and use the following

criteria to select our sample for the analysis. First, we drop 165,253 farms with no

deforestation between 2000-2019 because they are not available for punishment. Sec-

ond, we drop 26,671 farms with less than 10% of primary forest coverage in 2005 to

avoid the mechanical effects of reducing deforestation due to a lack of forest. Third,

we drop 3,752 farms with no deforestation before the first punishment to guarantee

that we are capturing punishments motivated by deforestation. Fourth, we drop 2,047

farms exposed to punishment before 2005 to focus on sanction effects after the moni-

toring system implementation. Finally, we split the remaining 167,959 farms into three

treatment and two control groups: 3,551 farms are in the Direct treatment group (first

direct punishment between 2005-2018), 28,495 in the Adjacent treatment group (first

adjacent neighbor punishment between 2005-2018), 7,297 in the Direct & Adjacent treat-

ment group (direct and adjacent neighbor punishment between 2005-2018); 2,566 in

the late-treated control group (first direct or adjacent neighbor punishment between

2019-2021); and 126,050 farms in the never-treated control group (no direct or adjacent

neighbor punishment). Figure A.2 shows the farms’ spatial distribution by groups.

3.5 Descriptive Statistics

Table 1 presents the descriptive statistics for the pre-treatment period, providing an

overview of the different groups. Treated farms exhibit, on average, higher levels of
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deforestation area, deforestation recurrence, reforestation area, CO2 emissions, and

property area compared to the control farms. It also shows that, for all groups, the

majority of the property area was covered by forest in 2005. The recurrence of defor-

estation and the prevalence of forest cover among treated farms even in the year of

punishment suggest that, in the absence of sanctions, many forests would be at risk of

future deforestation. This indicates that we should not expect mechanical effects due

to forest scarcity or single deforestation events driving the results.

Figure 1 presents the deforestation trajectories for each treatment cohort by type,

along with the two control groups. We see a clear trend reversal across all cohorts

with direct punishment, which is absent in the control groups. This reversal provides

initial descriptive evidence that sanctions may effectively reduce deforestation. Addi-

tionally, the data shows that IBAMA targets farms with higher levels of deforestation

and increasing deforestation rates.18

4 Empirical Strategy

Our empirical strategy aims to identify the impacts of environmental sanctions on

farmers’ behavior related to deforestation and reforestation. The challenge is that law

enforcement targets farms with high levels of deforestation. Hence, a simple compar-

ison of post-punishment averages between punished and non-punished farmers can

have the opposite sign of the causal effect because of selection bias.

To address these pre-existing differences in levels and control for common shocks,

we use a staggered difference-in-differences framework that leverages the timing and

location of the environmental sanctions between 2000-2021. Following the Callaway

and Sant’Anna (2021) methodology,19 we estimate average treatment effects on the

18Given the correlation between punishment and deforestation dynamics, it is important to consider po-
tential reverse causality biases. The significant increase in deforestation observed after 2016 among the
late-treated farms cannot be considered a credible counterfactual for the early-treated farms. To miti-
gate this issue, we select the never-treated farms as the preferred control group and only incorporate
the late-treated farms in robustness exercises, restricting the sample until 2016 to avoid reverse causality
bias.

19We do not rely on the usual two-way fixed effect regression because it can introduce bias in contexts
with multiple periods, treatment timing variation, and dynamic heterogeneous effects (see Roth et al.
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treated (ATT type(g, t)) for each cohort g, year t, and treatment type20 by comparing

the outcome evolution between punished and never-punished farmers, under the hy-

pothesis that in the absence of treatment, the trends would be parallel. In robust-

ness exercises (Section A.3), we relax this assumption in three ways: conditioning on

lagged outcome dynamics to reduce the potential for selection bias and regression-

to-the-mean-effects; considering a linear extension of the pre-trends as an alternative

counterfactual; and using a within municipality-by-property-size groups estimator to

further address potential confounding effects.

4.1 Estimation and Aggregation

Let i ∈ {1, 2, ..., N} be farms, t ∈ {2000, 2001, ..., 2019} years, Gtype
i = g ∈ {2005, 2006, ..., 2018}

treatment cohorts of each type ∈ {Direct & Adjacent, Direct, Adjacent}, Ci = 1 the con-

trol group of never-treated farms, and ∆Yig−1,t ≡ Yi,t − Yi,g−1 the evolution of outcome

Y ∈ {IHS(deforestation area), IHS(reforestation area)} in a given year t relative to the

year before treatment g − 1.

For a given treatment type, Callaway and Sant’Anna (2021) propose an uncondi-

tional estimator for the average treatment effect of environmental sanctions for cohort

g at year t ≥ g given by:

ÂTT
type

(g, t) =

∑
i∆Yig−1,t1

{
Gtype

i = g
}∑

i 1
{
Gtype

i = g
} −

∑
i ∆Yig−1,tCi∑

i Ci

(1)

This estimator is equivalent to a two-period/two-group difference-in-differences

estimator that compares the average outcome evolution of the treated group in year t,

post-treatment, relative to year g − 1, pre-treatment, with the average outcome evolu-

tion of the control group across the same periods.

After estimating each ÂTT
type

(g, t), we have 780 parameters (20 years x 13 co-

horts x 3 treatment types) to summarize, considering deforestation as the outcome.

(2022), De Chaisemartin and D’Haultfoeuille (2022), and Baker et al. (2022) for recent surveys of this
literature).

20We focus on three treatment types: farms that are punished directly (Direct), farms that are not punished
but witness the punishment of an adjacent neighbor (Adjacent), and farms that are punished and witness
the punishment of an adjacent neighbor (Direct & Adjacent).
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We present the main results in an event study aggregation, which combines the esti-

mates by relative time since the treatment year (e = t − g ∈ {−5 : 5}). We focus on

cohorts treated between 2005 and 2014 to observe at least five years of exposure and

avoid changes in sample composition across relative time. To evaluate magnitudes,

we combine the post-treatment estimates (e =∈ {1 : 5}) into a single measure. Next,

we aggregate by treatment cohort (g ∈ {2005 : 2018}), focusing on the impact one year

after (e = 1) to evaluate heterogeneity over time. Finally, we aggregate by calendar

year (t ∈ {2006 : 2019}) to include all effects and construct a counterfactual scenario

without sanction effects. We weigh all aggregations by the share of treated farms.

4.2 Identification

The estimator in Equation 1 relies on three assumptions for identification: (1) ab-

sorbing treatment, meaning that each farm belongs to a unique treatment cohort and

changes its status only once; (2) no anticipation, meaning that treatment effects are null

before any punishment occurs; and (3) parallel trends, meaning that in the absence of

punishment, the outcome evolution between g − 1 and t for treatment cohort g would

be the same as the evolution of the control group Ci = 1.

The key assumption of parallel trends establishes that the control group trends act

as the counterfactual for the treatment group trends in the post-period. This assump-

tion is reasonable when we have reforestation as the outcome because reforestation

measurements were not available to influence the allocation of sanctions at that time.

For the adjacent treatment, it is also reasonable because witnessing the punishment

of a neighbor is arguably exogenous to the farmers’ behavior. For cases with direct

punishment, we should expect increasing differential trends because IBAMA priori-

tizes punishing farmers with accelerating deforestation, such that assuming parallel

trends can be conservative relative to using the pre-trends linear extrapolation as the

counterfactual or can exaggerate the punishment effects relative to comparing farms

with similar deforestation trajectories pre-punishment due to mean reversion effects.

We conduct three robustness exercises to account for differential trends and relax
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the parallel trends assumption. First, we control for the pre-treatment lagged outcome

dynamics to reduce the potential for selection bias and regression to the mean effects

among punished farms (Acemoglu et al., 2019; Dube et al., 2023). Second, we use lin-

ear extrapolations of the pre-trends as an alternative counterfactual trajectory, follow-

ing (Rambachan and Roth, 2023) partial identification methods to conduct inference.

Third, we use an outcome regression (OR) estimator conditioning on the municipality-

by-property-size groups to avoid potential bias from municipality-specific policies and

differences based on the property size. See appendix Section A.3 for more details on

each exercise.

4.3 Inference

For the main results, we rely on the multiplier bootstrap procedure suggested by Call-

away and Sant’Anna (2021) to conduct inference. We compute simultaneous confi-

dence intervals robust to multiple hypothesis testing in the event study and cohort

aggregations. In all cases, we cluster the standard errors at the farm level to allow for

heteroskedasticity and serial correlation within a farm.

5 Results

5.1 Sanction Effects on Deforestation and Reforestation

Figure 2 presents the balanced event study aggregation of the environmental sanction

effects on deforestation and reforestation for each type of treatment.21 In Panels Direct

& Adjacent and Direct, we see that punishment changes farmers’ behavior, leading to

a reversal in deforestation trends and a reduction of 39% and 49%, respectively, on

average, across one to five years of exposure. In Panel Adjacent, we see that farmers

exposed to the punishment of an adjacent neighbor decrease deforestation by 22%,

showing the relevance of spillover effects. The magnitude of the adjacent exposure is

smaller than the other two treatment types, but the number of impacted farms is 2.5
21In the appendix, we also present the full event study with all relative years in Figure A.3.
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times larger than both combined. These spillovers suggest that when farmers witness

a punishment, they update their beliefs about the risk of violating the forest laws and

reduce their demand for deforestation because of the increase in the expected costs of

engaging in illegal activity sanctions, which characterizes the deterrence mechanism.

The sanctions also increase reforestation by 22%, 13%, and 7.2% across one to five

years of exposure among farmers with Direct & Adjacent, Direct, and Adjacent treat-

ments, respectively. These results are relevant because they corroborate Assunção et al.

(2019) findings that command-and-control policies may impact social welfare more

than previously thought through forest conservation. We complement them by di-

rectly measuring enforcement actions and observing responses at the decision-maker

level. The impact on reforestation is also consistent with a deterrence mechanism. Us-

ing areas deforested without permission is also illegal, so an increase in the perceived

risk of violating forest laws can also reduce the demand for illegally deforested lands,

leading to the abandonment of these areas and allowing the forest to regrow naturally.

In the case of an embargo punishment, there is an explicit goal of preventing further

damage and allowing forest regrowth by prohibiting any activity in the specified area

and increasing punishment severity in case of recidivism.

The event study estimates also present the pre-trends, which can act as an indirect

test of the parallel trends assumption. For reforestation, the pre-trend differences are

close to zero, which is expected given that reforestation was an invisible phenomenon

at the time, so it could not influence law enforcement decisions. For the Adjacent treat-

ment, it is also small because witnessing the punishment of a neighbor is arguably

exogenous to the farmers’ behavior.

However, for cases with direct punishment, there is a rising differential trend be-

cause IBAMA targets farms with accelerating deforestation. On the one hand, as the

pre-trends evolve almost linearly in the opposite direction of the post-treatment ef-

fects, assuming parallel trends might give us conservative magnitudes relative to us-

ing the pre-trends linear extrapolation as the counterfactual. On the other hand, the

difference in pre-trends could also exaggerate the punishment effects relative to com-
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paring farms with similar trajectories pre-punishment due to mean reversion effects.

In practice, we conduct robustness exercises for both scenarios to bound the direct

effects, adjusting: for a linear extrapolation of the pre-trends and the pre-treatment

lagged outcome dynamics. See Section A.3 for more details on each exercise.

Figure 3 plots the baseline event study and the two robustness estimates. For the

Direct & Adjacent and Direct treatments with deforestation as the outcome, we see that

adjusting for the linear trend makes the effects even larger in magnitude, increasing

from 39% to 63% and 49% to 65%, respectively. While adjusting for the lagged out-

come dynamics makes the effects smaller in magnitude, decreasing from 39% to 33%

and 49% to 44%. For the other treatment-outcome combinations where the differen-

tial pre-trends are small, the adjustments have less impact on the effect sizes. Overall,

these robustness exercises provide additional confidence in the baseline results by ac-

counting for the pre-trends while maintaining similar post-treatment effects.

5.2 Mechanism: Deterrence x Incapacitation

The spillover effects suggest that deterrence is a relevant mechanism because there is

no apparent direct impact channel. However, for direct treatment effects, an alterna-

tive mechanism that could also play a critical role is incapacitation. Here we provide

additional evidence by exploring different punishments, varying the potential for in-

capacitation effects.

As explained in Section 2, there are four punishment combinations: fines, fines + em-

bargoes, fines + seizures, and fines + embargoes + seizures. A standalone fine acts more as a

communication that the State will open an administrative process against the offender,

which usually takes a long time. Even when the fine is confirmed, it is not paid 90%

of the time (Schmitt, 2015). Hence, fines by themselves have a low potential for inca-

pacitation. An embargo punishment aims to prevent further damage and allow forest

regrowth by prohibiting any activity inside the embargoed area, increasing the pun-

ishment severity in cases of recidivism, and restricting credit availability. Therefore,

embargoes have a higher potential for incapacitation through credit restrictions but
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also a higher potential for deterrence through the threat of recurrent and more severe

sanctions. In theory, seizure and equipment destruction present the highest potential

for incapacitation because they target deforestation-specific capital. In practice, there

are many cases of seizure where the offender retains possession of the equipment in

the role of trustee, drastically reducing the incapacitation potential.

Table 2 and Figure A.4 show that even standalone fines, with the lowest potential

for incapacitation and pre-trends close to zero, produce one of the largest reductions

in deforestation, suggesting that deterrence can also play a role among directly pun-

ished farmers. Moreover, punishments with embargoes are prevalent and produce

one of the largest impacts on deforestation and reforestation, showing the relevance of

a component that combines deterrence and incapacitation for forest conservation. Fi-

nally, seizures present noisier estimates for direct impact and significant conservation

impacts for adjacent neighbors.22

5.3 Local Effects and Overall Commitment to Law Enforcement

Next, we analyze how the effects of sanctions vary over time. Figure 4 show each co-

hort’s effects with one year of exposure. We see a clear trend of decreasing magnitudes

on deforestation, especially for the Adjacent treatment, going from -21.9% (2005-2012)

to -2.56% (2013-2018).23 As discussed in Section 2, starting in 2004, the Federal Govern-

ment increased the efforts to curb deforestation in the Amazon through more robust

law enforcement, but the momentum was relatively short-lived. After 2012, the com-

mitment to forest law enforcement waned under political pressure, and there was a

22It is important to note that comparisons across punishment types should be interpreted cautiously,
as the selection of the specific punishment combination is endogenous. For example, there are large
variations in terms of the average of the dependent variable in the year prior to punishment. However,
the effects of adjacent punishments, where exposure to the punishment is more exogenous, demonstrate
an intuitive pattern, with a greater number of punishments leading to larger effects. We also include a
robustness estimator controlling for the pre-treatment lagged outcome dynamics that show very similar
estimates in the event-study plot.

23The large increase in georeferenced fines between 2005-2011 cannot explain this result. A lower share
of georeferenced fines means that punished farms with no georeferenced fine will be misclassified as
never-treated, generating a bias towards a null result. Hence, as the share of georeferenced fines in-
creases over time, we should expect this potential bias to reduce, which goes in the opposite direction
of the observed effects. In practice, the bias should be small given that there are more than three times
never-treated farms relative to all treated farms combined.
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reversal in the overall deforestation trend (Burgess et al., 2019).24 Therefore, the tim-

ing of the political reversal coincides with the changes in the local effects of sanctions.

This result complements the findings of Burgess et al. (2019). They document how

changes in deforestation at the Brazilian international borders follow the degree of

commitment to environmental regulation by the Federal Government. As examples of

the commitment deterioration, they highlight the 2012 revision of the Forest Code that

pardoned 90% of the farmers for past deforestation and the reductions in the number

of enforcement officers, IBAMA’s budget, and operational expenditures in the Ama-

zon. Here, the overall commitment may have significant repercussions for the effec-

tiveness of local law enforcement actions. Given the signals that illegal deforestation

will be pardoned and enforcement is losing momentum, farmers may stop perceiving

current sanctions as a signal of increased risk to engage in future forest law violations,

diminishing deterrence effects.

5.4 Do Farmers React Strategically to Avoid Punishment?

The main goal of enforcing forest regulations is to improve conservation through

changes in farmers’ actions. However, farmers can react strategically to avoid punish-

ment rather than changing their behavior as intended by the regulators. We explore

two potential ways that farmers could use to circumvent law enforcement.

First, we examine whether farmers avoid the satellite monitoring system by chang-

ing their deforestation patterns to smaller polygons below the detection limits. Previ-

ous studies provide descriptive evidence of this trend after DETER’s implementation

(Assunção et al., 2017; Kalamandeen et al., 2018). Assunção et al. (2017) show that

the rise in small-scale deforestation is present among all property sizes. They use

property-level data from two Amazon States (Mato Grosso and Pará) and argue that

this is suggestive - albeit not causal - evidence of strategic behavior to elude moni-

toring and does not reflect only a change in the type of deforesting agents. Another

possible explanation for this trend is a reverse causality story. As the enforcement
24There was also a reversal in the number of sanctions per deforested area in 2009, as shown in Figure

A.1.
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targets properties with large polygons, it will curb this type of deforestation such that

even if farmers decide to keep their relative deforestation pattern fixed, the proportion

of aggregate small-scale deforestation will increase.

We provide more robust evidence relative to the previous analyses by combining

our causal identification framework at the property level with more detailed data on

deforestation, including the period after an improvement in DETER’s monitoring ca-

pacity. The data allow us to categorize deforestation into four types based on the

degree of monitoring: large (monitored since 2004), medium (monitored since 2015),

small (never monitored), and secondary vegetation (never monitored). Table 3 shows

that all types of deforestation decrease after any punishment exposure. The largest

magnitudes come from large and medium types, followed by small and secondary

vegetation.

We interpret these results as evidence against the farmers’ strategic response expla-

nation because there is no increase in non-monitored deforestation. Hence, the contri-

bution to the rise in the proportion of small-scale deforestation from monitoring and

law enforcement comes more from the targeting criteria and heterogeneous effects.

There are at least two possible explanations for the lack of strategic response. Farm-

ers could take time to learn about the system’s limitations as they change over time,

despite being public information. Moreover, there can be gains of scale in the size

of the deforestation polygon, making monitored and non-monitored polygons poor

substitutes.

Second, we investigate the possibility of spatial displacement. There is an ongo-

ing debate in the crime literature about the direction of spillover effects from targeted

law enforcement: evaluating if they generate broad deterrence (Braga et al., 2019), or

displace crime to non-targeted areas (Blattman et al., 2021). To evaluate the spillover

effects beyond adjacent neighbors, we expand the range of potentially exposed farm-

ers, including three other distance rings: non-adjacent farms less than 10 kilometers,

between 10 and 50 kilometers, and between 50 and 200 kilometers. This exercise

also accounts for possible violations of the Stable Unit Treatment Value Assumption
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(SUTVA), restricting the control group to 67 never-treated farms more than 200 kilo-

meters away from any punished farm and 2,944 late-treated farms, with a neighbor

punished only after 2019.25

Figure 5 shows significant reductions in deforestation among adjacent and non-

adjacent farms until 10 kilometers (84% of neighbor farms), no effects between 10-50

kilometers (15% of neighbor farms), and a noisy increase between 50-200 kilometers

(1% of neighbor farms). These results suggest there was no spatial displacement of

deforestation to less targeted areas among 99% of the farms in our context and that

deterrence intensity decay over space. For reforestation, we see an increase among

adjacent farms, null effects among non-adjacent farms until 10 kilometers, and reduc-

tions among farms between 10 and 200 kilometers, suggesting no spatial displacement

among 84% of the farms in our context and a faster deterrence decay over space.

There are at least three possible explanations for the lack of a clear spatial dis-

placement of deforestation. First, deforestation in the Amazon is usually motivated

by future land use (e.g., agricultural production or illegal land grabbing), thus re-

quiring spatial permanence to collect the benefits. Second, the entire biome is under

surveillance with DETER, and the conservation requirements in non-private areas are

even more strict. Third, moving to a new location might require rapid and extensive

initial deforestation, which can draw much attention from IBAMA. In the case of re-

forestation, secondary forests were not monitored at the time, reducing the cost of

displacement.

Overall, we find no evidence of relevant strategic responses such as deforestation

pattern change and spatial displacement. These findings help to explain sanctions’

effectiveness in improving forest law enforcement at scale, even in a context with low

punishment rates. This lack of strategic responses also contrasts with evidence of rel-

25To increase power we follow Butts (2023), that adapts Gardner (2022) two-stage difference-in-differences
estimator. We remove farms with direct punishment from the sample and incorporate spillovers by
restricting the observations of the first-stage (Yit = µi + λt + uit) to units in the control group with
no spillover exposure and by including a set of distance ring indicators in the second-stage (regressing
the residuals of the first stage, including all observations with no direct punishment, on indicators by
relative treatment time and distance ring). Identification becomes stronger in this case because farms of
each distance ring must have the same parallel trends.

22



evant changes in behavior to avoid targeted enforcement in other contexts (Banerjee

et al., 2019; Blattman et al., 2021; Gonzalez-Lira and Mobarak, 2021), and highlights

the importance of accounting for spillovers in policy evaluations (Pfaff and Robalino,

2017).

5.5 Robustness

In this section, we conduct several robustness checks to increase confidence in our

results. We use an alternative estimator, split the sample based on forest cover and

property group, test alternative outcome transformations, and select a different control

group. We reproduce the balanced event study plot for the alternative estimator, forest

cover, and control group robustness. For the property group and alternative outcomes,

we present a single coefficient, aggregated from the balanced event study, for each

treatment, data subset, and outcome.

First, we consider an alternative estimator for dealing with potential confounding

factors, as detailed in Section A.3. The outcome regression (OR) estimator controls

for the municipality and property size group to ensure that any municipality-specific

policies or differential treatment based on property size do not confound the results.

Figure A.5 shows post-treatment effects smaller but close to the baseline event-study

(Figure 2).26

Next, we investigate whether the availability of forests drives our results. To do

this, we divide the farms into six bins based on the percentage of the property cov-

ered by forest in 2005. Table A.2 shows significant effects relevant in magnitude across

all bins, reinforcing that punishment effects reducing deforestation are not driven by

forest scarcity. Figure A.6 shows that for all bins below 70% the pre-trends are close

to null, while the post-treatment effects are still significant and large. Hence, for sub-

groups with better evidence supporting the parallel trends assumption, we have ef-

fects in the same direction and similar in size.
26The number of treated and control farms in the OR regression is smaller than in the baseline event-study

because we remove farms in groups without at least one treated and one control farm.
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We also examine the effects across different property groups. We divide the prop-

erties by size (small, medium, and large), as a proxy for different types of farmers,

by registration (registered, self-reported, terra-legal), as a proxy for tenure stability,

and by intersection with public forests, as a proxy for illegal land grabbing. Table A.3

shows that the effects are similar across all property groups, indicating that no sin-

gle group drives our results and minimizing concerns about tenure mismeasurement

biasing the results.

Next, we test different outcome transformations, including the raw area measure

and an alternative normalization by property area. We also distinguish between ex-

tensive and intensive margins, using a dummy for the occurrence of any deforestation

in a given year and the log of non-zero outcomes, respectively. Table A.4 shows that

the normalization choice does not affect our results’ significance and that both the ex-

tensive and intensive margins are relevant. The baseline IHS estimates are even more

conservative regarding magnitude than the alternatives.

Finally, we modify the comparison group from never-treated to late-treated farms.

Late-treated farms are more similar to early-treated farms than never-treated farms (as

shown in Table 1). However, since they are punished based on previous deforestation,

using these years may introduce reverse causality bias. To minimize this issue, we

restrict the sample to 2016 and use farms punished between 2019 and 2021 as the

control group. We also adjust the balanced event study, including farms punished

between 2005 and 2011 in the treatment group. Figure A.7 shows almost identical

results to the baseline estimates in Figure 2, despite all the changes in the sample for

analysis.

6 Counterfactual Analysis: Shutting Down Sanctions

To assess the overall impact of environmental sanctions on deforestation, we construct

a counterfactual scenario in which we shut down all sanctions issued between 2005

and 2018. To embrace heterogeneous effects, we use the disaggregated ATT type(g, t)
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cohort-year-treatment estimates from Equation 1. We transform the coefficients to per-

centages (exp (estimate)−1), then to deforestation area, multiplying the percentages by

the average deforestation in hectares one year before punishment and by the number

of farms for each cohort and treatment type. Next, we aggregate to the annual level,

summing all transformed estimates with at least one year of exposure, and calculate

the counterfactual deforestation area by adding the annual increments of each treat-

ment type to the observed deforestation within farms. We repeat this same exercise

using deforestation CO2 emissions and reforestation as outcomes.27

Table 4 shows that in the counterfactual scenario, deforestation would increase by

48% relative to the observed area between 2006-2019, indicating that the existence of

sanctions prevented 2.267 million hectares of deforestation. In terms of CO2 emissions,

there would be an increase of 71%, indicating that sanctions avoided 1.599 billion tons

of CO2 between 2006-2019, equivalent to 31% of US emissions in 2021 (Friedlingstein

et al., 2022). For reforestation, the counterfactual area would be 3.3% smaller than ob-

served between 2006-2018, indicating that sanctions promoted 0.158 million hectares

of reforestation.

The estimates may understate the total impact of sanctions as they do not include

sanctions prior to 2005, and we do not observe all sanctions at the farm level between

2005 and 2010 due to the lack of georeferencing. In addition, our framework identifies

only local causal effects. However, strengthening command and control may have

an aggregate deterrence impact on all farms that is not causally identifiable in our

empirical strategy.28

7 Conclusion

Our study provides new evidence on how sanctions and spillovers can be a powerful

tool for improving forest conservation at scale. It also suggests that deterrence plays a

27Figure A.8 reproduces the balanced event study estimates using the deforestation CO2 emissions as the
outcome, showing even large magnitudes as we incorporate spatial heterogeneity of carbon stock.

28For example, (Burgess et al., 2019) show evidence of large discontinuities in deforestation at the Brazil-
ian international border disappearing after PPCDAm’s introduction.
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relevant role in shaping farmers’ behavior by altering their perceived risk of violating

forest laws after exposure to environmental sanctions.

These findings have important policy implications. First, sanctions generate per-

sistent reductions in deforestation, avoiding the emission of 1.599 billion tons of CO2,

equivalent to 31% of US emissions in 2021 (Friedlingstein et al., 2022). Second, tar-

geted sanctions and spillovers help to reconcile the apparent contradiction between

the considerable deforestation reduction observed between 2004-2012 and the low

punishment and fine collection rates by showing how one sanction can change the

behavior of multiple potential offenders. Third, documenting spillover effects has

implications regarding cost-effectiveness and optimal law enforcement targeting, as

previously demonstrated by Assunção et al. (2022b), at the municipality level. Fourth,

some states in the Brazilian Amazon have recently begun using remote punishment

systems, applying embargoes based on existing satellite images without field-based

inspection (Azevedo et al., 2022a). This strategy provides an innovative way to in-

crease punishment rates with faster responses at lower costs, potentially boosting de-

terrence. However, dramatically increasing punishment rates can also generate politi-

cal backlash (Browne et al., 2023). Future research can utilize our empirical framework

to test these hypotheses and evaluate the effectiveness of remote punishment.

Finally, it is important to note that environmental sanction effects do not occur in a

vacuum. As described in Section 2, Brazil implemented a series of policies during the

analysis period with the potential for interactions. The near-real-time satellite moni-

toring system allows for timely and targeted sanctions. The rural credit restriction in

embargoed areas increases the cost of being punished even with no fine payment. The

priority municipalities list concentrates efforts on high deforestation municipalities.

The strict conservation requirements leave almost no room for legal deforestation. Fu-

ture work could exploit existing geographic discontinuities and the timing of these

policies to identify how the sanction effects interact with each feature to improve the

understanding of the external validity.
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8 Figures

Figure 1: Deforestation Evolution by Punishment Type and Cohort

Notes: The figure plots the deforestation trajectories for each treatment cohort g by type and the two control groups (late- and
never-treated). It also highlights the punishment year of each treated cohort with dashed vertical lines. The deforestation area
is normalized using the inverse hyperbolic sine transformation. Direct & Adjacent (treat.): farms with first direct and adjacent
neighbor punishment between 2005-2018. Direct (treat.): farms with first direct punishment between 2005-2018. Adjacent (treat.):
farms with first adjacent neighbor punishment between 2005-2018. Late (control): farms with first direct or adjacent neighbor
punishment between 2019-2021. Never (control): Farms with no direct or adjacent neighbor punishment between 2000-2021.
Data Sources: (Freitas et al., 2018; MapBiomas, 2021; IBAMA, 2022).
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Figure 2: Sanction Effects on Deforestation and Reforestation

Notes: The figure plots the balanced event-study aggregation, which combines the estimates from Equation 1 by relative time
since the treatment year (e = t− g ∈ {−5 : 5}), of the environmental sanction effects on deforestation and reforestation for each
type of treatment. The effects are relative to the year before the first sanction. The dependent variables are normalized using
the inverse hyperbolic sine transformation. The grey shaded area indicates the treatment year. The sample includes cohorts
treated between 2005 and 2014 to observe at least five years of exposure and avoid changes in composition across relative time.
For reforestation, the last cohort is 2013 because the data ends in 2018 instead of 2019. Magnitude (e=1:5): is the average estimate
from one to five years of exposure transformed to a percentage interpretation by 100 ∗ (exp (average estimate) − 1). Mean
Dep. Var.: is the average dependent variable in the year before treatment for the treated group. Control group: farms with no
direct or adjacent neighbor punishment between 2000-2021. Direct & Adjacent: farms exposed to direct and adjacent neighbor
punishment. Direct: farms only exposed to direct punishment. Adjacent: farms only exposed to adjacent neighbor punishment.
Bands are uniform 95% confidence intervals based on standard errors from a multiplier bootstrap procedure clustered by farm,
as suggested by Callaway and Sant’Anna (2021).
Data Sources: (Freitas et al., 2018; MapBiomas, 2021; IBAMA, 2022).
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Figure 3: Robustness to Parallel Trends Violation

Notes: The figure plots the baseline event-study estimates from Figure 2, along with two robustness: one controlling for lagged
outcomes (e=-5:-1) using the Local Projection based difference-in-differences approach as stated in Equation A.1 (Dube et al.,
2023); and the other subtracting the predicted linear pre-trend, detailed in Section A.3.2. The effects are relative to the year be-
fore the first sanction for the baseline and net linear trends approaches and the year of the first sanction for the lagged outcome
approach. The sample includes cohorts treated between 2005 and 2014 to observe at least five years of exposure and avoid
changes in composition across relative time. For reforestation, the last cohort is 2013 because the data ends in 2018 instead of
2019. Magnitude Ctrl Lag (e=1:5): is the average estimate from one to five years of exposure transformed to a percentage interpre-
tation by 100 ∗ (exp (average estimate) − 1), controlling for lagged outcomes. Magnitude Baseline (e=1:5): is the average baseline
estimate from one to five years of exposure transformed into a percentage interpretation. Magnitude Net Trend (e=1:5): is the
average baseline estimate net of the linear trend from one to five years of exposure transformed to a percentage interpretation.
Control group: farms with no direct or adjacent neighbor punishment between 2000-2021. Direct & Adjacent: farms exposed to
direct and adjacent neighbor punishment. Direct: farms only exposed to direct punishment. Adjacent: farms only exposed to
adjacent neighbor punishment. For the lagged outcome estimates, bands are 95% confidence intervals based on standard er-
rors clustered by farm. For the baseline estimates, bands are uniform 95% confidence intervals based on standard errors from
a multiplier bootstrap procedure clustered by farm, as suggested by Callaway and Sant’Anna (2021). For the net linear trend
estimates, bands are the 95% confidence interval constructed under the weaker assumption of linear violations of the parallel
trends using the smoothness restriction from Rambachan and Roth (2023).
Data Sources: (Freitas et al., 2018; MapBiomas, 2021; IBAMA, 2022).
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Figure 4: Sanctions Effects Over Time

Notes: The figure plots the treatment cohort effects, focusing on each type’s impact one year after treatment (e = 1). The depen-
dent variables are normalized using the inverse hyperbolic sine transformation. The sample includes cohorts treated between
2005 and 2014 to observe at least five years of exposure and avoid changes in composition across relative time. For reforestation,
the last cohort is 2013 because the data ends in 2018 instead of 2019. Control group: farms with no direct or adjacent neighbor
punishment between 2000-2021. Direct & Adjacent: farms exposed to direct and adjacent neighbor punishment. Direct: farms
only exposed to direct punishment. Adjacent: farms only exposed to adjacent neighbor punishment. Bands are uniform 95%
confidence intervals based on standard errors from a multiplier bootstrap procedure clustered by farm, as suggested by Call-
away and Sant’Anna (2021).
Data Sources: (Freitas et al., 2018; MapBiomas, 2021; IBAMA, 2022).
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Figure 5: Sanction Effects by Neighbor Distance

Notes: The figure plots the balanced event-study estimates of the environmental sanction spillover effects on deforestation and
reforestation by distance ring, following Butts (2023), that adapts Gardner (2022) two-stage difference-in-differences estimator.
We remove farms with direct punishment from the sample and incorporate spillovers by restricting the observations of the first-
stage (Yit = µi + λt + uit) to units in the control group with no spillover exposure and by including a set of distance ring
indicators in the second-stage (regressing the residuals of the first stage, including all observations with no direct punishment,
on indicators by relative treatment time and distance ring). The relative time goes from -5 until 5 years since the neighbor pun-
ishment, with -1 being the reference. The distance rings are: farms adjacent to a punished farm (Adjacent); farms non-adjacent
and within 10 kilometers from a punished farm (Non-Adjacent <10km); farms between 10 and 50 kilometers from a punished
farm (10km-50km); and farms between 50 and 200 kilometers from a punished farm (50km-200km). Control group: farms more
than 200 kilometers from any punished farm (never-treated) or with a neighbor punished within 200 kilometers only after 2019
(late-treated). The dependent variables are normalized using the inverse hyperbolic sine transformation. The grey shaded area
indicates the neighbor punishment year. The sample includes farm cohorts exposed to neighbor punishment between 2005 and
2014 to observe at least five years of exposure and avoid changes in sample composition across relative time. For reforestation,
the last cohort is 2013 because the data ends in 2018 instead of 2019. Magnitude (e=1:5): is the average estimate from one to five
years of exposure transformed to a percentage interpretation by 100∗(exp (average estimate)−1). Mean Dep. Var.: is the average
dependent variable in the year before treatment for the treated group. Bands are 95% confidence intervals based on standard er-
rors clustered at the farm level, estimated using the two-stage GMM procedure suggested by Gardner (2022).
Data Sources: (Freitas et al., 2018; MapBiomas, 2021; IBAMA, 2022).
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9 Tables

Table 1: Descriptive Statistics By Treatment Group

Treatment Control

Direct &
Adjacent

Direct Adjacent Late Never

Deforest. Area (ha) 27.4 10.9 8.1 3.5 1.4
(85.9) (29.74) (24.65) (7.2) (4.32)

Deforest. Recurrence (#) 4.6 4.7 3.8 4.5 3.6
(2.74) (3.12) (2.64) (3.33) (2.9)

Reforest. Area (ha) 4.8 3.4 2.1 1.4 1.2
(20.86) (16.42) (7.91) (4.9) (4.77)

CO2 Emissions (1,000 t) 11.7 4.8 3.3 1.6 0.6
(37.35) (13.83) (9.95) (3.41) (1.78)

Property Area (1,000 ha) 1.8 0.9 0.6 0.5 0.2
(6.67) (3.75) (1.85) (1.74) (2.24)

Forest in 2005 (%) 69.0 60.6 57.5 65.0 50.1
(23.91) (26) (26.22) (26.98) (27.29)

Forest at Punishment (%) 55.0 46.7 46.3 48.3
(25.25) (25.3) (26.03) (28.69)

Farms (#) 7297 3551 28495 2566 126050

Notes: This table presents descriptive statistics for each treatment and control group at the farm level. For
treatment groups, the averages and standard deviations (in parenthesis) are from 2000 until the treatment year,
while for the control groups, they cover the whole sample period 2000-2019. The only exceptions are: Forest in
2005 (%), which is measured in 2005; and Forest at Punishment (%), which is measured at the year of the first
punishment exposure for treatment groups, and 2019 for the late-treated group (last year available). The sample
includes all farms in the Brazilian Amazon with any deforestation between 2000-2019, with more than 10% of
primary forest coverage in 2005, with any deforestation before the first punishment, and with no punishment
or with the first punishment after 2005, as detailed in Section 3.4. Direct & Adjacent: farms with first direct
and adjacent neighbor punishment between 2005-2018. Direct: farms with first direct punishment between
2005-2018. Adjacent: farms with first adjacent neighbor punishment between 2005-2018. Late: farms with first
direct or adjacent neighbor punishment between 2019-2021. Never: Farms with no direct or adjacent neighbor
punishment between 2000-2021.
Data Sources: (Freitas et al., 2018; MapBiomas, 2021; IBAMA, 2022)
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Table 2: Heterogeneity by Type of Sanction

IHS(deforestation area) IHS(reforestation area)

Fine Fine +
Embargo

Fine +
Seizure

Fine +
Embargo
+ Seizure

Fine Fine +
Embargo

Fine +
Seizure

Fine +
Embargo
+ Seizure

Treat: Direct & Adjacent
Agg. Coef. (e=1:5) -0.669*** -0.557*** -0.19* -0.385*** 0.021 0.199*** 0.134* 0.22***

(0.133) (0.029) (0.114) (0.043) (0.059) (0.013) (0.073) (0.023)

Magnitude (e=1:5) -49% -43% -17% -32% 2.1% 22% 14% 25%
Mean Dep. Var. (e=-1) 24ha 27ha 15ha 48ha 5.8ha 3.4ha 10ha 7.8ha
# Treated Farms 151 4236 187 1967 145 3962 179 1851
# Control Farms 126050 126050 126050 126050 126050 126050 126050 126050

Treat: Direct
Agg. Coef. (e=1:5) -0.59*** -0.765*** -0.203** -0.618*** 0.105** 0.131*** 0.097* 0.105

(0.086) (0.04) (0.087) (0.119) (0.044) (0.019) (0.053) (0.072)

Magnitude (e=1:5) -45% -53% -18% -46% 11% 14% 10% 11%
Mean Dep. Var. (e=-1) 10ha 14ha 5.8ha 17ha 3.1ha 4ha 6.4ha 4ha
# Treated Farms 292 1858 239 194 254 1632 217 177
# Control Farms 126050 126050 126050 126050 126050 126050 126050 126050

Treat: Adjacent
Agg. Coef. (e=1:5) -0.195*** -0.243*** -0.192*** -0.313*** 0.028* 0.068*** 0.076*** 0.095***

(0.028) (0.01) (0.024) (0.022) (0.016) (0.006) (0.017) (0.012)

Magnitude (e=1:5) -18% -22% -17% -27% 2.8% 7% 7.9% 10%
Mean Dep. Var. (e=-1) 4.7ha 5.9ha 4.2ha 8.3ha 2.2ha 2.1ha 3ha 3.4ha
# Treated Farms 2021 15004 1833 3778 1828 13493 1697 3571
# Control Farms 126050 126050 126050 126050 126050 126050 126050 126050

Notes: The table presents the averages across one to five years of exposure from the balanced event-study aggregation of Equation
1 estimates for each treatment type and varying the type of sanction. The dependent variables are normalized using the inverse
hyperbolic sine transformation. The sample includes cohorts treated between 2005 and 2014 to observe at least five years of
exposure and avoid changes in composition across relative time. For reforestation, the last cohort is 2013 because the data ends
in 2018 instead of 2019. Control group: farms with no direct or adjacent neighbor receiving any sanction between 2000-2021.
Magnitude (e=1:5): is the average estimate from one to five years of exposure transformed to a percentage interpretation by
100 ∗ (exp (average estimate) − 1). Mean Dep. Var. (e=-1): is the average of the dependent variable in the year before treatment
for the treated group. Direct & Adjacent: farms exposed to direct and adjacent neighbor punishment. Direct: farms only exposed
to direct punishment. Adjacent: farms only exposed to adjacent neighbor punishment. Standard errors are from a multiplier
bootstrap procedure clustered by farm, as suggested by Callaway and Sant’Anna (2021). Significance: *** p<0.01, ** p<0.05, *
p<0.10.
Data Sources: (Freitas et al., 2018; MapBiomas, 2021; IBAMA, 2022).
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Table 3: Sanction Effects on Deforestation by Monitoring Degree

IHS(deforestation type area)

Large Medium Small Sec. Veg.

Treatment: Direct & Adjacent
Agg. Coef. (e=1:5) -0.347*** -0.294*** -0.141*** -0.018*

(0.022) (0.019) (0.013) (0.009)

Magnitude (e=1:5) -29.3% -25.5% -13.2% -1.79%
Mean Dep. Var. (e=-1) 22ha 7.7ha 3.5ha 2.1ha
# Treated Farms 6541 6541 6541 6541
# Control Farms 126050 126050 126050 126050

Treatment: Direct
Agg. Coef. (e=1:5) -0.334*** -0.389*** -0.173*** -0.087***

(0.027) (0.026) (0.016) (0.015)

Magnitude (e=1:5) -28.4% -32.2% -15.9% -8.32%
Mean Dep. Var. (e=-1) 8.5ha 3.3ha 1.3ha 1.3ha
# Treated Farms 2583 2583 2583 2583
# Control Farms 126050 126050 126050 126050

Treatment: Adjacent
Agg. Coef. (e=1:5) -0.09*** -0.137*** -0.101*** -0.008**

(0.006) (0.006) (0.005) (0.004)

Magnitude (e=1:5) -8.61% -12.8% -9.62% -0.791%
Mean Dep. Var. (e=-1) 3.5ha 1.7ha 0.84ha 0.64ha
# Treated Farms 22636 22636 22636 22636
# Control Farms 126050 126050 126050 126050

Notes: The table presents the averages across one to five years of exposure from the balanced
event-study aggregation of Equation 1 estimates for each treatment type and varying the type
of deforestation as the dependent variable. The dependent variables are normalized using the
inverse hyperbolic sine transformation. Large: polygons larger than 25 hectares, monitored since
2004. Medium: polygons between 3-25ha, monitored since 2015. Small: polygons smaller than 3ha,
never monitored. Sec. Veg.: polygons of deforestation of secondary vegetation, never monitored
by official systems. The sample includes cohorts treated between 2005 and 2014 to observe at least
five years of exposure and avoid changes in composition across relative time. For reforestation,
the last cohort is 2013 because the data ends in 2018 instead of 2019. Control group: farms with no
direct or adjacent neighbor receiving any sanction between 2000-2021. Magnitude (e=1:5): is the
average estimate from one to five years of exposure transformed to a percentage interpretation by
100 ∗ (exp (average estimate) − 1). Mean Dep. Var. (e=-1): is the average of the dependent variable
in the year before treatment for the treated group. Direct & Adjacent: farms exposed to direct and
adjacent neighbor punishment. Direct: farms only exposed to direct punishment. Adjacent: farms
only exposed to adjacent neighbor punishment. Standard errors are from a multiplier bootstrap
procedure clustered by farm, as suggested by Callaway and Sant’Anna (2021). Significance: ***
p<0.01, ** p<0.05, * p<0.10.
Data Sources: (Freitas et al., 2018; MapBiomas, 2021; IBAMA, 2022).
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Table 4: Shutting Down Sanctions

Deforestation Area
(million hectares)

Deforestation Emission
(billion tonnes CO2)

Reforestation Area
(million hectares)

Year Observed Full
Shutdown

Observed Full
Shutdown

Observed Full
Shutdown

2006 0.765 0.802 0.348 0.373 0.311 0.309
2007 0.550 0.620 0.254 0.300 0.340 0.337
2008 0.479 0.577 0.214 0.284 0.374 0.367
2009 0.240 0.403 0.114 0.224 0.331 0.320
2010 0.211 0.386 0.102 0.222 0.412 0.399
2011 0.268 0.428 0.121 0.233 0.403 0.393
2012 0.192 0.375 0.093 0.218 0.492 0.476
2013 0.238 0.427 0.113 0.246 0.449 0.428
2014 0.235 0.428 0.115 0.251 0.318 0.304
2015 0.283 0.472 0.139 0.274 0.328 0.311
2016 0.333 0.533 0.167 0.312 0.337 0.319
2017 0.284 0.487 0.141 0.287 0.333 0.318
2018 0.334 0.533 0.167 0.312 0.338 0.328
2019 0.316 0.524 0.160 0.310 NA NA

2006-2019 4.728 6.996 2.248 3.848 4.767 4.609

Notes: This table presents the annual deforestation area, deforestation CO2 emission, and reforestation area
within farms from 2006 through 2019 and the sum across all years (Observed). It also presents the counter-
factual annual values for each measure, considering a scenario with no effects from sanctions issued between
2005 and 2018 (Full Shutdown).
Data Sources: (Freitas et al., 2018; MapBiomas, 2021; GFW, 2022; IBAMA, 2022).
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A Appendix

A.1 Additional Figures

Figure A.1: Deforestation, Reforestation, and Environmental Sanctions

Notes: The figure plots the total area of deforestation (in 1,000,000 hectares), the total area of reforestation (in 1,000,000 hectares),
the number of sanctions (in thousands) issued by IBAMA in the Brazilian Amazon biome, and the number of sanctions divided
by the deforested area (in square kilometers). It also highlights 2004, the initial year of the Federal Government’s plan to curb
deforestation in the Amazon (PPCDAm), with a dashed vertical line. The number of sanctions includes flora-related fines,
embargoes, and seizures.
Data Sources: (MapBiomas, 2021; IBAMA, 2022).
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Figure A.2: Farms Spatial Distribution

Notes: The figure plots a map of the Brazilian Amazon biome with the spatial distribution of farms faceted by group, following
the description from Section 3.4. Discarded: farms with no deforestation between 2000-2019 or less than 10% of primary forest
coverage in 2005 or with no deforestation before the first punishment or with the first punishment before 2005. Direct & Adjacent
(treat.): farms with first direct and adjacent neighbor punishment between 2005-2018. Direct (treat.): farms with first direct pun-
ishment between 2005-2018. Adjacent (treat.): farms with first adjacent neighbor punishment between 2005-2018. Late (control):
farms with first direct or adjacent neighbor punishment between 2019-2021. Never (control): Farms with no direct or adjacent
neighbor punishment between 2000-2021.
Data Sources: (Freitas et al., 2018; MapBiomas, 2021; IBAMA, 2022).
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Figure A.3: Full Event-Study Estimates

Notes: The figure plots the full event-study aggregation, which combines the estimates from Equation 1 by relative time since
the treatment year (e = t − g ∈ {−18 : 14}), of the environmental sanction effects on deforestation and reforestation for
each type of treatment. The effects are relative to the year before the first sanction. The dependent variables are normalized
using the inverse hyperbolic sine transformation. The grey shaded area indicates the treatment year. The sample includes all
cohorts treated between 2005 and 2018. For reforestation, the last cohort is 2017 because the data ends in 2018 instead of 2019.
Magnitude (e=1:14): is the average estimate from one to fourteen years of exposure transformed to a percentage interpretation
by 100 ∗ (exp (average estimate) − 1). Mean Dep. Var.: is the average dependent variable in the year before treatment for the
treated group. Control group: farms with no direct or adjacent neighbor punishment between 2000-2021. Direct & Adjacent:
farms exposed to direct and adjacent neighbor punishment. Direct: farms only exposed to direct punishment. Adjacent: farms
only exposed to adjacent neighbor punishment. Bands are uniform 95% confidence intervals based on standard errors from a
multiplier bootstrap procedure clustered by farm, as suggested by Callaway and Sant’Anna (2021).
Data Sources: (Freitas et al., 2018; MapBiomas, 2021; IBAMA, 2022).
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Figure A.4: Heterogeneity by Type of Sanction

Notes: The figure plots the baseline balanced event-study aggregation, which combines the estimates from Equation 1 by rela-
tive time since the treatment year (e = t−g ∈ {−5 : 5}), of the environmental sanction effects on deforestation and reforestation
for each treatment type and varying the type of sanction. It also includes a robustness controlling for lagged outcomes (e=-5:-1)
using the Local Projection based difference-in-differences approach as stated in Equation A.1. The effects are relative to the year
before the first sanction for the baseline estimator and to the year of punishment for the lagged outcome approach. The depen-
dent variables are normalized using the inverse hyperbolic sine transformation. The sample includes cohorts treated between
2005 and 2014 to observe at least five years of exposure and avoid changes in composition across relative time. For reforestation,
the last cohort is 2013 because the data ends in 2018 instead of 2019. Control group: farms with no direct or adjacent neighbor
receiving any sanction between 2000-2021. Direct & Adjacent: farms exposed to direct and adjacent neighbor punishment. Di-
rect: farms only exposed to direct punishment. Adjacent: farms only exposed to adjacent neighbor punishment. For the lagged
outcome estimates, bands are 95% confidence intervals based on standard errors clustered by farm. For the baseline estimates,
bands are uniform 95% confidence intervals based on standard errors from a multiplier bootstrap procedure clustered by farm,
as suggested by Callaway and Sant’Anna (2021).
Data Sources: (Freitas et al., 2018; MapBiomas, 2021; IBAMA, 2022).
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Figure A.5: Within Municipality and Property Size Estimator

Notes: The figure plots the balanced event-study aggregation by relative time since the treatment year (e = t− g ∈ {−5 : 5}), of
the environmental sanction effects on deforestation and reforestation for each type of treatment, using the within municipality
and property size outcome regression approach (Equation A.3). The effects are relative to the year before the first sanction.
The dependent variables are normalized using the inverse hyperbolic sine transformation. The grey shaded area indicates the
treatment year. The sample includes cohorts treated between 2005 and 2014 to observe at least five years of exposure and avoid
changes in composition across relative time. For reforestation, the last cohort is 2013 because the data ends in 2018 instead of
2019. Magnitude (e=1:5): is the average estimate from one to five years of exposure transformed to a percentage interpretation
by 100 ∗ (exp (average estimate) − 1). Mean Dep. Var.: is the average dependent variable in the year before treatment for the
treated group. Control group: farms with no direct or adjacent neighbor punishment between 2000-2021. Direct & Adjacent:
farms exposed to direct and adjacent neighbor punishment. Direct: farms only exposed to direct punishment. Adjacent: farms
only exposed to adjacent neighbor punishment. Bands are uniform 95% confidence intervals based on standard errors from a
multiplier bootstrap procedure clustered by farm, as suggested by Callaway and Sant’Anna (2021).
Data Sources: (Freitas et al., 2018; MapBiomas, 2021; IBAMA, 2022).
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Figure A.6: Heterogeneity by Forest Cover

Notes: The figure plots the balanced event-study aggregation, which combines the estimates from Equation 1 by relative time
since the treatment year (e = t − g ∈ {−5 : 5}), of the environmental sanction effects on deforestation and reforestation for
each type of treatment and varying the bin of forest cover in 2005. The effects are relative to the year before the first sanction.
The dependent variables are normalized using the inverse hyperbolic sine transformation. The sample includes cohorts treated
between 2005 and 2014 to observe at least five years of exposure and avoid changes in composition across relative time. For
reforestation, the last cohort is 2013 because the data ends in 2018 instead of 2019. Control group: farms with no direct or adjacent
neighbor receiving any sanction between 2000-2021 within the forest cover bin. Direct & Adjacent: farms exposed to direct and
adjacent neighbor punishment. Direct: farms only exposed to directDirect & Adjacent: farms exposed to direct and adjacent
neighbor punishment. Direct: farms only exposed to direct punishment. Adjacent: farms only exposed to adjacent neighbor
punishment. Bands are uniform 95% confidence intervals based on standard errors from a multiplier bootstrap procedure
clustered by farm, as suggested by Callaway and Sant’Anna (2021).
Data Sources: (Freitas et al., 2018; MapBiomas, 2021; IBAMA, 2022).
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Figure A.7: Late-treated as Control Group

Notes: The figure plots the balanced event-study aggregation, which combines the estimates from Equation 1 by relative time
since the treatment year (e = t− g ∈ {−5 : 5}), of the environmental sanction effects on deforestation and reforestation for each
type of treatment. The effects are relative to the year before the first sanction. The dependent variables are normalized using the
inverse hyperbolic sine transformation. The grey shaded area indicates the treatment year. The sample includes cohorts treated
between 2005 and 2011 to observe at least five years of exposure and avoid changes in sample composition across relative time.
Magnitude (e=1:5): is the average estimate from one to five years of exposure transformed to a percentage interpretation by
100 ∗ (exp (average estimate) − 1). Mean Dep. Var.: is the average dependent variable in the year before treatment for the treated
group. Control group: farms with direct or adjacent neighbor punishment between 2019-2021. Direct & Adjacent: farms exposed
to direct and adjacent neighbor punishment. Direct: farms only exposed to direct punishment. Adjacent: farms only exposed
to adjacent neighbor punishment. Bands are uniform 95% confidence intervals based on standard errors from a multiplier
bootstrap procedure clustered by farm, as suggested by Callaway and Sant’Anna (2021).
Data Sources: (Freitas et al., 2018; MapBiomas, 2021; IBAMA, 2022).
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Figure A.8: Sanction Effects on Deforestation CO2 Emissions

Notes: The figure plots the balanced event-study aggregation, which combines the estimates from Equation 1 by relative time
since the treatment year (e = t − g ∈ {−5 : 5}), of the environmental sanction effects on deforestation CO2 emissions for
each type of treatment. The effects are relative to the year before the first sanction. The dependent variable is normalized using
the inverse hyperbolic sine transformation. The grey shaded area indicates the treatment year. The sample includes cohorts
treated between 2005 and 2014 to observe at least five years of exposure and avoid changes in composition across relative time.
For reforestation, the last cohort is 2013 because the data ends in 2018 instead of 2019. Magnitude (e=1:5): is the average estimate
from one to five years of exposure transformed to a percentage interpretation by 100 ∗ (exp (average estimate) − 1). Mean
Dep. Var.: is the average dependent variable in the year before treatment for the treated group. Control group: farms with no
direct or adjacent neighbor punishment between 2000-2021. Direct & Adjacent: farms exposed to direct and adjacent neighbor
punishment. Direct: farms only exposed to direct punishment. Adjacent: farms only exposed to adjacent neighbor punishment.
Bands are uniform 95% confidence intervals based on standard errors from a multiplier bootstrap procedure clustered by farm,
as suggested by Callaway and Sant’Anna (2021).
Data Sources: (Freitas et al., 2018; MapBiomas, 2021; GFW, 2022; IBAMA, 2022).
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A.2 Additional Tables

Table A.1: Number of Farms by Punishment Year

# Farms % of total property area % of annual deforestation % of fines

Year Direct &
Adjacent

Direct Adjacent Direct &
Adjacent

Direct Adjacent Direct &
Adjacent

Direct Adjacent geo-
referenced

2000 9 21 109 0.01 0.14 0.11 0.10 0.09 0.10 1.42
2001 16 53 259 0.02 0.16 0.16 0.15 0.51 0.33 1.89
2002 24 102 300 0.02 0.54 0.41 0.37 1.34 0.37 3.27
2003 54 213 563 0.08 1.11 0.79 0.52 2.93 1.24 5.80
2004 60 356 999 0.06 2.73 1.52 0.24 4.45 2.24 9.73
2005 142 530 1503 0.26 2.60 1.72 0.76 5.44 2.61 10.87
2006 253 834 2791 0.39 3.50 2.35 0.66 6.34 3.20 31.15
2007 404 1270 4214 0.36 3.04 3.67 0.76 6.55 3.77 55.05
2008 372 1054 3856 0.46 2.62 3.31 1.21 4.42 2.50 54.42
2009 291 540 2963 0.30 1.19 2.10 0.68 4.19 1.84 52.28
2010 250 660 2539 0.29 0.99 1.90 1.08 4.48 2.25 70.86
2011 292 779 2808 0.37 0.69 1.62 1.23 3.79 2.70 100.00
2012 277 750 3057 0.20 0.75 1.48 1.07 5.51 2.62 100.00
2013 269 543 2667 0.18 0.46 0.92 1.74 3.26 1.84 100.00
2014 321 468 2408 0.27 0.41 1.10 1.50 2.30 1.07 100.00
2015 349 337 2384 0.25 0.26 1.19 2.17 1.92 1.57 100.00
2016 251 209 1436 0.50 0.15 0.85 1.16 2.25 1.25 100.00
2017 254 186 1671 0.19 0.19 0.84 1.24 2.34 0.88 100.00
2018 194 160 1536 0.18 0.41 1.05 1.07 1.98 1.03 100.00
2019 191 112 1047 0.12 0.16 0.59 1.87 1.42 1.32 99.97
2020 110 42 670 0.08 0.05 0.40 NA NA NA 100.00
2021 117 31 590 0.12 0.02 0.38 NA NA NA 100.00

Notes: This table presents the number of farms, percentage of the property area, percentage of deforestation, and percentage of fines with geo-
referenced information by punishment year for each treatment type. Direct & Adjacent: farms with direct and adjacent neighbor punishment. Direct:
farms only with direct punishment. Adjacent: farms with adjacent neighbor punishment.
Data Sources: (Freitas et al., 2018; MapBiomas, 2021; IBAMA, 2022).
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Table A.2: Heterogeneity by Forest Cover

IHS(deforestation area) IHS(reforestation area)

[0%-10%] (10%-
30%]

(30%-
50%]

(50%-
70%]

(70%-
90%]

(90%-
100%]

[0%-10%] (10%-
30%]

(30%-
50%]

(50%-
70%]

(70%-
90%]

(90%-
100%]

Treatment: Direct & Adjacent
Agg. Coef. (e=1:5) -0.414*** -0.595*** -0.697*** -0.637*** -0.523*** -0.293*** 0.167** 0.17*** 0.128*** 0.154*** 0.201*** 0.25***

(0.121) (0.067) (0.061) (0.047) (0.04) (0.053) (0.076) (0.038) (0.031) (0.025) (0.018) (0.023)

Magnitude (e=1:5) -33.9% -44.9% -50.2% -47.1% -40.7% -25.4% 18.2% 18.5% 13.6% 16.7% 22.3% 28.4%
Mean Dep. Var. (e=-1) 7.7ha 28ha 38ha 36ha 32ha 29ha 5.8ha 7.7ha 7.7ha 6.8ha 3.2ha 2.2ha
# Treated Farms 129 565 976 1435 2084 1481 123 542 934 1364 1952 1345
# Control Farms 23463 38802 29127 23059 20880 14182 23463 38802 29127 23059 20880 14182

Treatment: Direct
Agg. Coef. (e=1:5) -0.312*** -0.328*** -0.651*** -0.719*** -0.935*** -0.706*** 0.075* 0.058 0.097*** 0.121*** 0.142*** 0.165***

(0.072) (0.057) (0.063) (0.064) (0.073) (0.098) (0.044) (0.036) (0.035) (0.035) (0.037) (0.043)

Magnitude (e=1:5) -26.8% -27.9% -47.9% -51.3% -60.7% -50.6% 7.81% 5.95% 10.2% 12.9% 15.3% 18%
Mean Dep. Var. (e=-1) 4.9ha 7.1ha 11ha 12ha 19ha 15ha 4.3ha 7.5ha 3.4ha 4.3ha 2.9ha 1.6ha
# Treated Farms 220 453 527 596 624 383 202 417 468 537 545 313
# Control Farms 23463 38802 29127 23059 20880 14182 23463 38802 29127 23059 20880 14182

Treatment: Adjacent
Agg. Coef. (e=1:5) -0.061*** -0.174*** -0.221*** -0.251*** -0.305*** -0.312*** 0.036*** 0.079*** 0.045*** 0.052*** 0.074*** 0.089***

(0.016) (0.015) (0.017) (0.019) (0.019) (0.024) (0.013) (0.01) (0.011) (0.011) (0.009) (0.014)

Magnitude (e=1:5) -5.91% -16% -19.8% -22.2% -26.3% -26.8% 3.66% 8.25% 4.62% 5.39% 7.66% 9.28%
Mean Dep. Var. (e=-1) 0.8ha 4.2ha 5.8ha 7.3ha 6.9ha 5.8ha 2.4ha 2.9ha 3.1ha 2.6ha 1.7ha 1.1ha
# Treated Farms 1816 4375 4971 5027 5260 3003 1722 4040 4540 4540 4793 2676
# Control Farms 23463 38802 29127 23059 20880 14182 23463 38802 29127 23059 20880 14182

Notes: The table presents the averages across one to five years of exposure from the balanced event-study aggregation of Equation 1 estimates for each treatment type and varying the bin of forest cover in 2005.
The dependent variables are normalized using the inverse hyperbolic sine transformation. The sample includes cohorts treated between 2005 and 2014 to observe at least five years of exposure and avoid changes in
composition across relative time. For reforestation, the last cohort is 2013 because the data ends in 2018 instead of 2019. Control group: farms with no direct or adjacent neighbor receiving any sanction between 2000-2021
within the forest cover bin. Magnitude (e=1:5): is the average estimate from one to five years of exposure transformed to a percentage interpretation by 100 ∗ (exp (average estimate) − 1). Mean Dep. Var. (e=-1): is the
average of the dependent variable in the year before treatment for the treated group. Direct & Adjacent: farms exposed to direct and adjacent neighbor punishment. Direct: farms only exposed to direct punishment.
Adjacent: farms only exposed to adjacent neighbor punishment. Standard errors are from a multiplier bootstrap procedure clustered by farm, as suggested by Callaway and Sant’Anna (2021). Significance: *** p<0.01,
** p<0.05, * p<0.10.
Data Sources: (Freitas et al., 2018; MapBiomas, 2021; IBAMA, 2022).
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Table A.3: Heterogeneity by Property Group

IHS(deforestation area)

Type:
Registered

Type:
Self-reported

Type:
Terra-Legal

Size:
Small

Size:
Medium

Size:
Large

Public
Forest:
Inside

Public
Forest:

Outside

Treatment: Direct & Adjacent
Agg. Coef. (e=1:5) -0.5*** -0.49*** -0.39*** -0.38*** -0.41*** -0.5*** -0.4*** -0.55***

(0.05) (0.04) (0.04) (0.03) (0.05) (0.05) (0.04) (0.03)

Magnitude (e=1:5) -40% -39% -33% -31% -34% -40% -33% -42%
Mean Dep. Var. (e=-1) 76ha 19ha 9.1ha 7.7ha 22ha 90ha 16ha 41ha
# Treated Farms 1832 3171 1538 3446 1333 1762 2253 4288
# Control Farms 9814 79854 36382 112474 9503 4073 30584 95466

Treatment: Direct
Agg. Coef. (e=1:5) -0.69*** -0.64*** -0.73*** -0.63*** -0.67*** -0.67*** -0.72*** -0.67***

(0.08) (0.04) (0.07) (0.04) (0.07) (0.1) (0.06) (0.04)

Magnitude (e=1:5) -50% -47% -52% -47% -49% -49% -51% -49%
Mean Dep. Var. (e=-1) 23ha 12ha 8.2ha 6.9ha 14ha 38ha 13ha 13ha
# Treated Farms 487 1554 542 1671 504 408 778 1805
# Control Farms 9814 79854 36382 112474 9503 4073 30584 95466

Treatment: Adjacent
Agg. Coef. (e=1:5) -0.26*** -0.24*** -0.21*** -0.19*** -0.28*** -0.28*** -0.3*** -0.23***

(0.02) (0.01) (0.02) (0.01) (0.03) (0.03) (0.02) (0.01)

Magnitude (e=1:5) -23% -21% -19% -17% -24% -25% -26% -20%
Mean Dep. Var. (e=-1) 15ha 4.3ha 2.8ha 2.5ha 9ha 24ha 4.6ha 6.6ha
# Treated Farms 4319 12554 5763 16412 3579 2645 6032 16604
# Control Farms 9814 79854 36382 112474 9503 4073 30584 95466

Notes: The table presents the averages across one to five years of exposure from the balanced event-study aggregation of Equation 1 estimates for each treatment type and
varying the property group. The dependent variables are normalized using the inverse hyperbolic sine transformation. Type Registered: registered in the National Institute
for Colonization and Agrarian Reform (INCRA). Type Self-declared: self-declared in the Environmental Rural Registry (CAR). Type Regularized: regularized in the Terra-Legal
program. Size Small: farms with less than four fiscal modules (an official metric that vary by municipality). Size Medium: farms between 4-15 fiscal modules. Size Large: farms
with more than 15 fiscal modules. Public Forest Inside: farms overlapping with undesignated public forests, potentially including cases of illegal land grabbing. Public Forest
Outside: farms not overlapping with undesignated public forests. The sample includes cohorts treated between 2005 and 2014 to observe at least five years of exposure and
avoid changes in composition across relative time. Control group: farms with no direct or adjacent neighbor receiving any sanction between 2000-2021 within the property
group. Magnitude (e=1:5): is the average estimate from one to five years of exposure transformed to a percentage interpretation by 100 ∗ (exp (average estimate) − 1). Mean
Dep. Var. (e=-1): is the average of the dependent variable in the year before treatment for the treated group. Direct & Adjacent: farms exposed to direct and adjacent neighbor
punishment. Direct: farms only exposed to direct punishment. Adjacent: farms only exposed to adjacent neighbor punishment. Standard errors are from a multiplier
bootstrap procedure clustered by farm, as suggested by Callaway and Sant’Anna (2021). Significance: *** p<0.01, ** p<0.05, * p<0.10.
Data Sources: (SFB, 2017; Freitas et al., 2018; MapBiomas, 2021; IBAMA, 2022).
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Table A.4: Varying Outcome Transformation

Deforestation Reforestation

IHS % Prop. Area Dummy Log IHS % Prop. Area Dummy Log

Treat: Direct & Adjacent
Agg. Coef. (e=1:5) -0.497*** -1.332*** -16.748*** -0.098*** -0.202*** 0.2*** 0.115*** 2.146*** 0.046*** 0.237***

(0.023) (0.126) (1.793) (0.006) (0.03) (0.011) (0.016) (0.342) (0.005) (0.03)

Magnitude (e=1:5) -39.2% -37.1% -51.1% -18.1% -18.3% 22.1% 40.4% 42.9% 6.61% 26.8%
Mean Dep. Var. (e=-1) 33ha 3.6% 33ha 0.54 33ha 5ha 0.28% 5ha 0.7 5ha
# Treated Farms 6541 6541 6541 6541 6541 6137 6137 6137 6137 6137
# Control Farms 126050 126050 126050 126050 126050 126050 126050 126050 126050 126050

Treat: Direct
Agg. Coef. (e=1:5) -0.682*** -2.423*** -9.212*** -0.178*** -0.526*** 0.123*** 0.113*** 0.305 0.031*** 0.166***

(0.033) (0.194) (0.917) (0.01) (0.047) (0.016) (0.02) (0.614) (0.007) (0.043)

Magnitude (e=1:5) -49.5% -66.9% -70% -37.3% -40.9% 13.1% 25.9% 7.35% 3.82% 18.1%
Mean Dep. Var. (e=-1) 13ha 3.6% 13ha 0.48 13ha 4.2ha 0.44% 4.2ha 0.81 4.2ha
# Treated Farms 2583 2583 2583 2583 2583 2280 2280 2280 2280 2280
# Control Farms 126050 126050 126050 126050 126050 126050 126050 126050 126050 126050

Treat: Adjacent
Agg. Coef. (e=1:5) -0.246*** -0.808*** -3.564*** -0.08*** -0.135*** 0.07*** 0.067*** 0.414*** 0.023*** 0.121***

(0.008) (0.054) (0.275) (0.003) (0.017) (0.005) (0.009) (0.136) (0.002) (0.015)

Magnitude (e=1:5) -21.8% -40.1% -58.8% -25.3% -12.7% 7.22% 13.7% 17% 2.95% 12.9%
Mean Dep. Var. (e=-1) 6.1ha 2% 6.1ha 0.31 6.1ha 2.4ha 0.48% 2.4ha 0.77 2.4ha
# Treated Farms 22636 22636 22636 22636 22636 20589 20589 20589 20589 20589
# Control Farms 126050 126050 126050 126050 126050 126050 126050 126050 126050 126050

Notes: The table presents the averages across one to five years of exposure from the balanced event-study aggregation of Equation 1 estimates for each treatment type and varying the
dependent variable normalization. IHS: the baseline normalization using the inverse hyperbolic sine transformation. % Prop: percentage of the property area. Area: the raw area measure.
Dummy: the extensive margin equals one if the area is larger than zero. Log: intensive margin, excludes observations with zero areas. The sample includes cohorts treated between 2005
and 2014 to observe at least five years of exposure and avoid changes in composition across relative time. For reforestation, the last cohort is 2013 because the data ends in 2018 instead
of 2019. Control group: farms with no direct or adjacent neighbor receiving any sanction between 2000-2021. Magnitude (e=1:5): is the average estimate from one to five years of exposure
transformed to a percentage interpretation by 100 ∗ (exp (average estimate)− 1). Mean Dep. Var. (e=-1): is the average of the dependent variable in the year before treatment for the treated
group. Direct & Adjacent: farms exposed to direct and adjacent neighbor punishment. Direct: farms only exposed to direct punishment. Adjacent: farms only exposed to adjacent neighbor
punishment. Standard errors are from a multiplier bootstrap procedure clustered by farm, as suggested by Callaway and Sant’Anna (2021). Significance: *** p<0.01, ** p<0.05, * p<0.10.
Data Sources: (Freitas et al., 2018; MapBiomas, 2021; IBAMA, 2022).

12



A.3 Relaxing the Parallel Trends Assumption

A.3.1 Conditioning on Lagged Outcomes (Local Projection Estimator)

To address concerns about the parallel trends assumption, we conduct a robustness ex-

ercise by controlling for the pre-treatment lagged outcome dynamics. This approach

helps to mitigate the risk of selection bias and regression to the mean effects.A.1 Also,

by conditioning on the trend, the residual decision to punish might be more influenced

by idiosyncratic factors, such as clouds blocking the satellite monitoring visibility,

rather than substantial differences that could correlate with future outcome trends.A.2

We use the local projection DD estimator proposed by Dube et al. (2023) to estimate

the treatment effects while conditioning on the pre-treatment lagged outcomes. Specif-

ically, we estimate the following specification separately for each outcome-treatment

combination:

yi,t+h − yi,t =βtype
h ∆Dtype

it (treatment type indicator)

+
5∑

k=1

γh
k∆yi,t−k (outcome lags)

+ δht (time effects)

+ ehit (error term),

(A.1)

where yi,t+h − yi,t represents the change in the outcome variable for farm i at time

t + h compared to time t, ∆Dtype
it is the first difference of the treatment type indicator,

∆yi,t−k represents the lagged outcome variables, βtype
h and γh

k are the corresponding

coefficients of interest, δht captures time fixed effects, and ehit is the error term.

To ensure the robustness of the estimates, we restrict the sample to observations

that are either newly treated or clean control. In other words, we include farms that

were newly treated (∆Dtype
it = 1) or farms that did not receive any treatment (Dtype

i,t+h = 0

A.1As IBAMA targets farms based on recent deforestation, an exceptional year with a large increase in
deforestation average could trigger punishment among farmers more subject to mechanically reducing
deforestation afterward, regressing to their mean.

A.2In our setup, when we condition on the deforestation trend, we also increase the probability of selecting
a farm in the never punished group that was punished since we do not observe the universe of punish-
ments before 2011. In this case, we would generate a bias toward a null result, so observing a significant
effect improves, even more, our confidence in the results.
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for all treatment types) throughout the analysis period. We also re-weight the regres-

sion to generate the average treatment effect on the treated (ATT) rather than variance-

weighted ATT

The local projection estimator with lagged outcomes allows us to examine the treat-

ment effects while controlling for the pre-treatment trajectory of the outcome variable.

By comparing the the balanced event study for each outcome-treatment combination

of this estimator with the baseline estimator, we can assess the sensitivity of the treat-

ment effects to the assumption of parallel trends. See Dube et al. (2023) for more details

about the method.

A.3.2 Allowing for Linear Violations of Parallel Trends

To deal with the differential trends, we complement our baseline event-study esti-

mates with additional ones under a weaker assumption that allows for linear viola-

tions of the parallel trends. The idea is that, in the absence of treatment, we should

not expect sudden changes in the observed pre-trends pattern relative to the counter-

factual post-trends pattern. So we can use the linear extrapolation of the differential

pre-trends as an alternative counterfactual for the post-period.

In practice, we fit a linear function of the event-study estimates pre-treatment on

the relative time since the treatment year (e ∈ {−5 : −1}). Then, we calculate the

predicted values for each event year e from the linear trend. Finally, we calculate the

difference between the baseline estimates and the predicted values. This procedure

exacerbates (reduces) the baseline effects when the differential pre-trends evolve in the

opposite (same) direction of the post-treatment effects and generates similar results to

the baseline when the pre-trends difference is close to zero.

To conduct inference, we apply the partial identification methods from Rambachan

and Roth (2023) under the smoothness restriction assumption allowing for linear vio-

lations (M=0).
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A.3.3 Within Municipality and Property Size (Outcome Regression Estimator)

The outcome regression (OR) estimator conditions on the municipality-property size

group and avoids potential bias from municipality-specific policies, such as the pri-

ority municipalities list, and differences based on the property size, such as the rural

credit restriction being less binding for small properties (Assunção et al., 2020). These

differences could be confounders as they potentially correlate with sanction targeting

and outcome trends.

We use the outcome regression approach from Sant’Anna and Zhao (2020) with two

steps. First, we estimate the change in outcomes among never-treated farms (Ci = 1)

for each municipality-by-property size group (X(i) = M(i)× S(i)):A.3

∆µ̂g−1,t(x) =

∑
i(∆Yig−1,t)1 {Ci = 1} 1{X(i) = x}

1 {Ci = 1} 1{X(i) = x}
(A.2)

Second, the conditional estimator for a given treatment type is:

ÂTT
type

OR (g, t) =

∑
i ((∆Yig−1,t)−∆µ̂g−1,t(x)) 1

{
Gtype

i = g
}∑

i 1
{
Gtype

i = g
} (A.3)

Identification is similar to the estimator in Equation 1, just changing the uncondi-

tional parallel trends by a conditional version based on farms within the same mu-

nicipality and property size group X(i). To compare with the unconditional estimator,

we perform the balanced event-study aggregation using the same multiplier bootstrap

procedure for inference.

A.3We remove farms in X(i) groups without at least one treated and one control farm.
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