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Abstract

In the estimation of the benefits of mortality reduction, a simple approach is to multiply
the value of a statistical life (VSL) by the expected reduction in fatalities, thus holding the VSL
constant. This procedure approximates benefits for small changes in mortality, but inaccu-
rately characterizes benefits for large risk changes because it does not account for variations
in the VSL. Building on the theoretical framework of the VSL, we outline a practical approach
to calculate the benefits of large mortality reductions. This approach is readily applicable,
yielding closed-form expressions that only require statistics broadly available for VSL-based
calculations. Using recent empirical estimates of the VSL, we apply this approach to estimate
the benefits of social distancing to combat COVID-19 in the United States and Brazil, two of
the countries most affected by the pandemic. Our findings show that social distancing gener-
ates a benefit of $4–4.4 trillion in the United States, and $0.6 trillion in Brazil. We extend this
analysis to other 72 countries using VSL projections and find that benefits correspond to 17%
of the gross national income on average. Our results indicate that the constant VSL approach
overestimates the benefits of social distancing by 74% on average.
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1 Introduction

The value of a statistical life (VSL) is the cornerstone of analyzing the benefits of mortality risk
reduction. Its foundation lies on the idea that, in equilibrium, a marginal change in the probabil-
ity of dying can be compensated by a variation in wealth or income. For small changes in risk,
benefits can be approximated by holding constant the estimated VSL—and thus the compensat-
ing marginal changes in income—and multiplying the VSL by the expected reduction in fatalities
(U.S. Environmental Protection Agency, 1983; Viscusi and Aldy, 2003). This procedure, however,
is inaccurate when risk changes are large and outside the sample intervals used to estimate the
VSL because marginal compensations can vary substantially.

This paper outlines a practical approach to calculate the benefits of large mortality risk re-
ductions. This approach is readily applicable, with closed-form expressions that only require
population-level statistics frequently available for standard VSL-based calculations. We show that
benefits calculated by linear extrapolation (i.e., constant marginal compensations) implicitly as-
sume that individuals display increasing marginal utility, which contradicts a standard assump-
tion of the VSL framework and leads to an imprecise representation of compensation for large
changes in risk. Building on the VSL framework, we consider VSL estimates as locally valid at
sample means, and derive expressions to characterize compensating variations for non-marginal
changes at various baseline risk levels. We show that compensation—or willingness to pay for
risk reduction—is concave in risk change when marginal utility is decreasing.

We apply the compensating variation approach to calculate the benefits of non-pharmaceutical
interventions to combat the spread of the new coronavirus (SARS-CoV-2) and the ensuing COVID-
19 pandemic. With countries worldwide facing recessions due to the pandemic, calculating the
economic benefits of social distancing policies has become crucial. Epidemiologists have projected
mortality risks that are orders of magnitude above work-related fatality risks (Walker et al., 2020).
However, with the exception of recent work by Hall et al. (2020), estimates of the benefits of social
distancing have assumed constant VSLs and overlooked the role of large risk changes (Thunström
et al., 2020; Greenstone and Nigam, 2020).

Our application first considers two of the countries most affected by the COVID-19 pandemic:
the United States and Brazil. For each country, we use recent estimates of the VSL and their sample
statistics (Kniesner et al., 2012; Pereira et al., 2020) to calculate the benefits of mortality reduction
due to social distancing (Walker et al., 2020). Our results show that the linear extrapolation ap-
proach may overestimate the benefits by 80 to 96%, for the US, and by 110 to 123% for Brazil. Next,
we calculate the benefits of mitigation for other 72 countries using projected VSL estimates (Vis-
cusi and Masterman, 2017). Based on calculations with age-specific mortality risks, we find that
the benefits of social distancing correspond to 17% of the gross national income (GNI) on average
(median 17%, 5–95th range [4%, 27%]). While we purposefully do not speculate about the costs of
different mitigation policies, benefits in this range of magnitude likely exceed the costs of social
distancing actions due to lower economic growth or increased public debt.

This paper makes two main contributions. First, it extends the theoretical framework of the
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VSL first proposed by Drèze (1962) and extensively developed in later decades (e.g., Bergstrom,
1982; Viscusi, 1993; León and Miguel, 2017).1 Among closely related studies on the relation be-
tween the VSL, risks, and properties of the utility function, Eeckhoudt and Hammitt (2001) ex-
amined the effect of background risks and find that large mortality and financial risks can signifi-
cantly affect the VSL. They also demonstrated that the elasticity of the VSL with respect to income
is expected to be larger than the relative risk aversion, a result further explored in Kaplow (2005).
Eeckhoudt and Hammitt (2004) showed that risk aversion may increase or decrease the VSL, de-
pending on the properties of the utility function and the levels of wealth and risk. We build on
their findings to propose a method that links theory and empirical estimates to calculate compen-
sations with non-marginal risk changes. Second, our paper contributes to the nascent literature
estimating the benefits of mitigation policies related to the COVID-19 pandemic (Greenstone and
Nigam, 2020; Thunström et al., 2020; Hall et al., 2020). Our method, here applied to pandemic
policies, could also be used in other contexts with large mortality risk, such as disaster prevention
and wars.

The rest of the paper is organized as follows. The next section develops the theoretical frame-
work, derives the expressions for benefit calculation, and presents the implications of different
approaches. We describe our data sources and outline our empirical method in Section 3, and
report and discuss results in Section 4. Section 5 presents concluding remarks.

2 Theoretical framework

The canonical representation of the VSL (Viscusi, 1993; Viscusi and Aldy, 2003) establishes an
expected utility of wealth w over a binary lottery with a one-period probability of survival s:

U (w, s) = sUa (w) + (1− s)Ud (w) (1)

where Ua and Ud are, respectively, the utility of staying alive until next period and the bequest
utility of dying during the current period. It is standard to assume Ua (w) > Ud (w) and U ′a (w) >

U ′d (w) ≥ 0, so that individuals derive more utility of (additional) wealth when alive. Totally
differentiating (1) holding utility constant, we obtain the standard expression for the VSL

V (w, s) ≡ −dw
ds

=
Ua (w)− Ud (w)

sU ′a (w) + (1− s)U ′d (w)
=

∆U
EU ′

(2)

where ∆U ≡ Ua − Ud is the marginal change in expected utility due to a change in the survival
probability, and EU ′ ≡ sU ′a (w) + (1− s)U ′d (w) is analogous to an expected marginal utility of
wealth.2

1Viscusi and Aldy (2003) and Andersson and Treich (2011) present comprehensive reviews of the theoretical and
empirical developments in this literature.

2We follow prior literature in not making a distinction between willingness-to-pay (WTP) and willingness-to-accept
(WTA) in our theory.
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The theory underlying VSL estimation often defines utility of consumption based on wealth
(e.g., Bergstrom, 1982; Eeckhoudt and Hammitt, 2004; Kaplow, 2005). Empirical studies of the
VSL, on the other hand, are frequently based on income metrics (e.g., Viscusi, 1993; Viscusi and
Aldy, 2003; Kniesner et al., 2012). These are not necessarily at odds because the VSL is a statement
about short-run marginal changes in wealth, which are reasonably approximated by variations in
income. The distinction between wealth and income becomes necessary if one wants to examine
large, non-marginal risk changes where the utility function specification is consequential.

2.1 Constant VSL approach

Simple benefit analyses of mortality reduction hold the VSL constant at an estimated V̄ , so that
benefits are calculated as linear extrapolations. In particular, the benefit of a positive discrete
change in survival probability from s to s+ h, with h ≤ 1− s, is given by

vlinear = hV̄ (3)

This procedure, however, has strong implications for the shape of the utility function.

Proposition 1. If the VSL does not vary with survival probability, then U (w, s) is convex in wealth (w).

Proof. See Appendix A.

Proposition 1 states that a linear extrapolation of benefits implies agents have increasing marginal
utility and, consequently, a risk-seeking attitude. The intuition of this result is as follows. As the
risk of dying increases (s becomes smaller), expected utility falls at a rate ∆U . Any wealth incre-
ment raises the alive utility (Ua) more than bequest utility (Ud). However, a smaller s also means
that increments of utility when alive happen with lower probability, so the marginal expected util-
ity of wealthEU ′ decreases. If an agent accepts linear compensation for an ever decreasing chance
of survival, it must be the case that the expected utility of wealth increases more than linearly to
compensate the loss of utility from the additional risk. Hence, while a linear benefit calculation
may provide a good approximation for small changes in risk, this method may yield imprecise
estimates for large changes.

2.2 Compensating variation approach

As an alternative to holding marginal changes constant, we examine how the compensation of
a discrete risk change varies with the initial risk level and the size of change. Let the v be the
maximum willingness to pay (or the opposite of the compensating variation) for a positive discrete
change h ≤ 1− s in survival probability. Then, v is implicitly defined in the indifference condition
U (w − v, s+ h) = U (w, s). By the Implicit Function Theorem, ∂v∂h = V (w − v, s+ h) > 0, which
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follows from the definition of the VSL. Moreover, it can be shown that

∂2v

∂h2
=

(
∂v

∂h

)2 (s+ h)U ′′a (w − v) + (1− s− h)U ′′d (w − v)

(s+ h)U ′a (w − v) + (1− s− h)U ′d (w − v)
< 0 (4)

which is negative due to the assumptions of U ′′a and U ′′d being negative. Hence, v is increasing
and concave. The concavity of v indicates that the VSL, while positive, decreases as the survival
probability increases (as in Eeckhoudt and Hammitt (2001)). This result follows from the assump-
tion of decreasing marginal utility of wealth: the marginal willingness to pay for increments in
survival probability decreases as wealth is reduced and marginal utility of wealth increases.

Going from an implicit definition of v to a form that is tractable for empirical use requires
further assumptions. To do so, we modify the representation U to distinguish wealth (w) and
income (y) so that existing empirical estimates of the VSL can be used to ground benefit analyses
of large mortality risks. We depart from the canonical model by redefining Ua = ua (c) + φ (w).
Function ua (c) is the utility of consumption of a homogeneous good with unitary price, with
u′a > 0 u′′a < 0. Function φ (w) is the continuation value, or the present value of future utility if
alive in the next period with wealth w. Moreover, define ud (w) ≡ Ud (w)− φ (w) as the difference
between the bequest utility and the continuation value. Then, we can represent expected utility as

U (y, s, w) = sua (y) + (1− s)ud (w) + φ (w) (5)

with the corresponding VSL given by

V (y, s, w) ≡ −dy
ds

=
ua (y)− ud (w)

su′a (y)
(6)

In line with empirical work in the VSL literature (e.g., Viscusi and Aldy, 2003; Kniesner et al.,
2012; Pereira et al., 2020), we abstract from savings, insurance, and other mechanisms of intertem-
poral transfer of wealth. This assumption of non-fungibility between wealth and income at the
current period grants tractability but has two main implications. First, it imposes that current
consumption and current income are equivalent (c = y), so that any risk compensation affects
current consumption only. Second, it imposes that bequest utility and the continuation value are
functions of wealth only and do not vary with current period income (∂ud/∂y = 0).

We posit that any estimated VSL (V̄ ) holds only locally for an agent at the mean variables
(ȳ, s̄, w̄). This assumption makes it possible to characterize the compensating variation of a dis-
crete survival probability change for an agent with mean income and wealth and any baseline
survival probability s. The agent’s maximum willingness to pay for a discrete survival probability
increase from s to s+h is implicitly defined in the indifference conditionU (ȳ − v (s, h) , s+ h, w̄) =

U (ȳ, s, w̄). Expanding this condition with identity (5) and applying (6) at the mean variables, we
can solve for v as

v (s, h) = ȳ − u−1a
(
ua (ȳ)− h

s+ h
V̄ s̄u′a (ȳ)

)
(7)
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Function v (s, h) is the base for calculating the benefits of discrete mortality risk reductions. In
particular, we are interested in assessing the value of a risk change relative to the mean income,
which we denote by b (s, h) ≡ v (s, h) /ȳ. To obtain a closed-form expression for the estimation of
benefits, it is necessary to specify a utility function. In this paper, we consider the constant relative
risk aversion (CRRA) utility, given by u (y) = y1−ρ−1

1−ρ , where ρ ≡ −y u′′u′ is the Arrow-Pratt relative
risk aversion coefficient. This particular function provides tractability while remaining flexible
enough to accommodate different estimated levels of risk aversion for each country. For ρ 6= 1,
the expression for the relative value of risk change is given by

bCRRA (s, h) ≡ vCRRA (s, h)

y
= 1−

[
1− (1− ρ)

(
h

s+ h

)
V

y
s̄

]1/(1−ρ)
(8)

When ρ = 1, the CRRA becomes the log-utility function, for which the relative value of risk
change is

blog (s, h) ≡
vlog (s, h)

ȳ
= 1− exp

(
− h

s+ h

V

y
s̄

)
(9)

3 Empirical method and data

We estimate the benefits of reduced mortality risk promoted by social distancing during the
COVID-19 pandemic, and compare the results using the constant VSL and the compensating vari-
ation approaches. Consistent with our theoretical framework, these estimates are based on rep-
resentative agents with mean income and wealth.3 In line with the US EPA (U.S. Environmental
Protection Agency, 1983, 2010) and other institutions (Viscusi and Aldy, 2003; Viscusi and Mas-
terman, 2017), we maintain a normative approach of no income or age-based discounting when
calculating aggregate benefits.4 The distribution of risks in a population, however, can be age-
specific, as discussed in the next subsection. Subsection 3.2 outlines the data used to estimate
benefits for a set of 74 countries.

3.1 Benefits and risk distribution

Motivated by the fact that COVID-19 mortality risk varies substantially by age group, we compare
benefits using uniform and age-specific risks. The heterogeneity in risk does not affect estimates
based on the constant VSL approach because of its linear form. However, the concavity of benefits
based on the compensating variation approach indicates that estimates depend on the distribution
of risks.

3Besides affecting mortality risks, the COVID-19 pandemic has also introduced shocks to income and output that
can affect VSL. These macroeconomic shocks, however, have dynamically endogenous components because different
mitigation strategies affect both short-term income and long-term economic recovery. Modeling these mechanisms is
beyond the scope of our analysis, for which reason we rely on the latest available income data.

4Though we purposefully do not consider age or income-based discounting, our framework may be readily adapted
to calculate the benefits for groups with different values for income and VSL, which are then combined to obtain the
aggregate benefits.

6

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3599529



Uniform risk All individuals face the same probability of survival if the pandemic is unmiti-
gated, s0, and same increase in probability due to social distancing, hSD. In this case, the benefit
of social distancing relative to mean the income is calculated by direct application of b (s0, hSD),
which can be equation (8) or (9), depending on ρ.

Age-specific risks We subdivide the population into G age groups indexed by g. Each group
has population weight wg, unmitigated survival probability sg,0, and probability increase hg,SD.
Then, the aggregate benefit relative to the mean income is

G∑
g=1

wgb (sg,0, hg,SD) (10)

We report estimates based on uniform and age-specific risks to show they can be substantially
different. Though benefits may vary for subgroups in a positive analysis, a policymaker may wish
to disregard such differences and focus on the average case for normative reasons.

3.2 Data sources

The estimation of benefits requires data on the following statistics: mean baseline survival proba-
bility (s̄), COVID-19 mortality risks (s0 and hSD), VSL (V̄ ), mean income (ȳ), and risk aversion (ρ).
Below, we describe each data source.

Mean baseline survival probability In the theoretical framework, this statistic refers to the
mean individual in the sample used for VSL estimation. Since the VSL estimates in this paper
come from compensating wage studies, we use average one-year survival probabilities for indi-
viduals between age 15 and age 60 to approximate the working-age population. This statistic is
available at the country-level from the United Nations (UN) 2019 World Population Prospects.

COVID-19 mortality risks The age-specific unmitigated survival is determined by the baseline,
pre-COVID-19 survival probability (s̄g) and the probability of surviving the COVID-19 pandemic5

without social distancing (sg,unmit). Thus, sg,0 = s̄gsg,unmit. Similarly, survival probability with
social distancing is s̄gsg,social dist., so that hg,SD = s̄g

(
sg,social dist. − sg,unmit

)
There are G = 9 age groups, arranged in decades for ages below 80 (0–9, 10–19, and so on)

and for all ages at or above 80. We gather age group population and survival probabilities at the
country level from the UN 2019 World Population Prospects. COVID-19 survival probabilities
are obtained from Walker et al. (2020), which project the expected number of deaths over a year
under different scenarios. These projections for over 200 countries take into account differences
in demographics and healthcare system capacity. We consider two scenarios reported in Walker

5Mortality risk in COVID-19 projections are respective to the finite duration of the pandemic (one year in Walker
et al. (2020)). As such, the our calculations are relative to a single period. For other types of persistent exposure to risk,
however, our framework can be extended to a multi-period calculation with inter-temporal discounting.
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et al. (2020) that use a reproduction number6 of 3: (i) Unmitigated: no reduction in the frequency
of social contact; and (ii) Social distancing: social contact in the general population decreases by
40 to 45%. As Walker et al. (2020) only provide data on aggregate deaths, we calculate age group-
specific mortality based on the corresponding population weights and infection fatality rates (IFR)
used in their simulations (Verity et al., 2020).7

VSL and income Here we make a distinction between estimated values obtained directly from
the literature, for the US and Brazil, and projected values using a method proposed in the litera-
ture. Benefit calculations use the estimated VSL from two studies based on compensating wage
differentials: Kniesner et al. (2012), for the US, and Pereira et al. (2020), for Brazil. Both studies es-
timate the VSL using a semilog form; we select the values resulting from the static first-difference
estimator used in both papers. To maintain consistency, we follow these studies in their choice of
income statistics. Mean wages for 2018, the latest year available, are obtained from the Bureau of
Labor Statistics (BLS, for the US) and the Instituto Brasileiro de Geografia e Estatı́stica (IBGE, for
Brazil). Brazilian wages are converted to US dollars with purchase power parity (PPP) using the
World Bank’s GDP-based PPP conversion factor (2.02 BRL to USD for year 2018).

We extend the benefit analysis to another 72 countries using the method proposed by Viscusi
and Masterman (2017) to project the US VSL to other countries. As in Viscusi and Masterman
(2017), we use an income elasticity of the VSL equal to one, so that the VSL of country c is given
by Vc = VUSyc/yUS . We also follow their choice of income statistic by using the latest values of
gross national income (GNI) per capita, in PPP US dollars, from the World Bank data.

Risk aversion We obtain the Arrow-Pratt relative risk aversion coefficients estimated from a
cross-country survey in Gandelman and Hernández-Murillo (2015). They show that test statistics
fail to reject the null hypothesis of ρ = 1 for almost all countries. Our results show that benefits
estimated using CRRA and log utility are fairly similar; the only exceptions are cases with very
low, and perhaps unreasonable, values of ρ. For these reasons, we choose to report our main
estimates based on the more robust assumption of ρ = 1 for all countries. We report CRRA-based
benefits in Appendix B, Tables B.3 and B.4.

The statistics used in the estimation for the US and Brazil are reported in Table 1. The scenarios
and model parameters for other counties are reported in Tables B.1 and B.2.

6The reproduction number, or R0, relates to how contagious a disease potentially is. It indicates the expected number
of individuals to which an infected person transmits the disease when the entire population is susceptible.

7The infection fatality rate is the probability of dying conditional on being infected. With a uniform attack rate
(probability of infection), the share of total deaths corresponding to age group g is given by wgIFRg/IFR, where
IFRg and IFR are the group-specific and mean IFRs.
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Table 1: Pandemic scenarios, VSL, and model parameters

United States Brazil
Population, million 331 213
COVID-19 deaths per 100,000:

- Unmitigated 791 512
- Social distancing 410 271

Mean annual wage (ȳ) $57,266 $14,204
VSL at mean wage (V̄ ) $7.70 M $2.70 M
Baseline survival prob. (s̄) 0.99731 0.99652
Relative risk aversion (ρ) 1.39 0.63

4 Results

4.1 Benefits based on the estimated VSL

We start by illustrating the difference in benefits estimated with different approaches. Figure 1
displays the benefit of mortality reduction as a percentage of the mean income for a US individual
with a one-year fatality probability of 2% (s0 = 0.98). The horizontal axis indicates the propor-
tional reduction in fatality probability and each curve represents a different approach: linear (Eq.
3), log-utility (Eq. 9) and CRRA (Eq. 8).

Figure 1 summarizes two key takeaways. First, it shows that linear and nonlinear methods
yield very similar benefits for small changes in mortality risk. However, as risk changes become
large, the total and marginal benefits diverge. For example, the log-utility benefit is 55% lower
than the linear extrapolation for a 50% reduction in probability of death. This difference is driven
by the rising marginal utility of income when additional income is allocated to lowering the proba-
bility of dying. Second, the graph shows that benefits computed assuming a log-utility and CRRA
yield similar results. This is explained by the estimated relative risk aversion coefficient being
close to 1 for the US (ρ = 1.39).
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Figure 1: Illustration of benefit estimates for the United States

We present the estimates of aggregate benefits of mortality reduction from social distancing in
Figure 2, with results for each method, risk distribution assumption, and country. Consistent with
the theoretical framework, these graphs show that benefits based on nonlinear methods are lower
than those based on the linear approach. For both countries, benefits based on age-specific risks
correspond to 19 to 23% of income, whereas the linear approach estimates range from 44 to 48%.
For the US, these benefits amount to $4–4.4 trillion ($9.1 trillion for the linear method), while for
Brazil they amount to approximately $0.6 trillion ($1.3 trillion for the linear method). Therefore,
the linear method overestimates the benefits of social distancing by 107–125% for the US, and by
109–124% for Brazil. Table B.3 reports all numerical estimates.

Our estimates based on the compensating variation are broadly lower than those based on the
linear approach reported in the recent literature. For instance, Greenstone and Nigam (2020) esti-
mate a value of $7.9 trillion, while Thunström et al. (2020) estimate a value of $12.4 trillion. These
papers, however, use slightly different mortality reduction scenarios, different VSL estimates, or
different assumptions on risk adjustment. Greenstone and Nigam (2020) use age-varying VSL
(Murphy and Topel, 2006), and Thunström et al. (2020) use a VSL of $10 million (Viscusi, 2018).
Our linear estimate, at $9.1 trillion, is close to the midpoint between these two estimates from the
literature. However, once we account for changes in the VSL, the estimated benefit falls by more
than a half. Our results are more similar to Hall et al. (2020), which also account for decreasing
marginal utility using a calibrated CRRA model. They estimate benefits of 24–31% of income, but
under a different risk scenario: they assume a higher average mortality change of 0.44% (Ferguson
et al., 2020), while our estimates are based on a change of 0.38% (Walker et al., 2020).
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Figure 2: Aggregate benefits of social distancing

Figure 2 also demonstrates the role of ρ, which explains the differences between log-utility and
CRRA estimates. Panel (a) shows that log-utility estimates are higher than CRRA estimates for the
US. This result is due to the US utility function being relatively more concave than the log utility,
with ρ greater than 1. The opposite is true for Brazil: as shown in panel (b) log-utility estimates
are lower than CRRA because ρ for Brazil is 0.63.

Another key result in Figure 2 is the difference between estimates based on uniform and age-
specific risks. This difference is driven by Jensen’s inequality: with a concave benefit curve, the
expected benefit with heterogeneous risks is lower than the benefit at the expected risk. To exam-
ine the components of this difference, we present benefit estimates for the United States by age
group in Figure 3 (and for Brazil in Figure B.1), along with the respective distributions of risk,
risk change, and population. Panel (a) shows the benefits relative to income for each age group,
while panel (b) shows the share of total benefits experienced by each group. Panel (c) displays the
baseline mortality rates in the unmitigated pandemic scenario (accounting for both the baseline
and COVID-19 risks), and panel (d) the reduction, due to social distancing, in the probability of
dying. Finally, panel (e) presents the population weights of each age group.

Panel (a) in Figure 3 reveals that individuals at age 50 or above experience the largest bene-
fits from social distancing. As panels (c) and (d) show, these individuals have a higher baseline
mortality and experience the largest reductions in the probability of death under social distancing.
Due to the combination of these factors, individuals aged 50+ correspond to 92% of benefits across
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Figure 3: Benefits with age-specific risks for the United States and distributions of benefit shares,
baseline mortality, mortality change, and population

all methods, despite representing only 35% of the population.
Figure 3 also indicates that the distribution of benefits are similar across methods. The excep-

tion is for the age group 80 or above, for which the linear method yields the largest difference to
compensating variation methods. This difference highlights the fact that benefits calculated with
the linear method grow substantially across age groups, while other methods report benefits lev-
elling off below 100%. As discussed in Section 2.2, this difference is explained by the fact that the
linear approach implicitly assumes an increasing marginal utility and imposes no limits to bene-
fits. In contrast, the compensating variation to risk reductions in our framework is bounded by
current income. Hence, for extreme risk changes where the context suggests benefits could exceed
income, other approaches may be more appropriate, such as life cycle models (Murphy and Topel,
2006; Hall and Jones, 2007).

4.2 Benefits based on the projected VSL

We extend the estimation of the benefits of social distancing to other 72 countries. Calculations
are based on the VSL projection method from Viscusi and Masterman (2017). We highlight that
many of these countries are middle- and low-income economies for which the literature may not
offer reliable VSL estimates. Figure 4 presents the estimated benefits for each country and scenario
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Figure 4: Benefit estimation for countries

comparing the linear and log-utility methods.8 Based on age-specific risks, our results show that
the average benefit of social distancing corresponds to 17% of GNI (median 17%, 5–95th range [4%,
29%]) for all 74 countries (including the US and Brazil). Moreover, the linear method overestimates
benefits by 74% on average (median 83%, 5–95th range [31%, 103%]). Benefit estimates for each
country and method are presented in Tables B.3 and B.4.

Figure 4 documents two other findings. First, the ordering of countries—based on the log-
utility and age-specific risk—corresponds to the ordering of factors most relevant to benefit calcu-
lation. Countries with higher income and more vulnerable populations appear mostly on the left
hand-side, with larger relative gains of social distancing. Countries with lower income or lower
COVID-19 mortality changes, such as Tanzania, Zimbabwe and Uganda, stand to the right of the
plot. These differences in mortality changes across countries reflect demographic considerations
(e.g. younger vs. older population) and healthcare capacity (Walker et al., 2020). Second, this Fig-
ure shows that differences between linear and log-utility estimates increase with the magnitude
of the risk reduction due to social distancing, thus in line with the mechanism discussed in Figure
1.

8We compare benefit estimates based on log-utility and CRRA in Figure B.2, which shows that these methods yield
very similar results.
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5 Conclusion

Empirical estimates of the VSL varying over large fatality risks are scarce, thus requiring benefit
analyses to extrapolate from commonly narrow ranges of risk used in VSL estimation. A simplistic
approach is to hold the VSL constant, which imposes limiting assumptions on the characteriza-
tion of risk compensations. To address this limitation in a practical perspective, we propose an
approach, grounded on the theory of VSL, that adjusts compensations for large risk changes. This
method acknowledges that current VSL estimates are valid locally and characterizes compensat-
ing variations of non-marginal changes to calculate benefits. We apply the proposed method to
calculate the benefits of mitigation policies to combat COVID-19, and compare the outcomes of
different approaches. Results indicate that linear estimates may substantially overestimate the
benefits of large risk reductions. This practical approach is applicable to computing economic
benefits in other situations involving large variations in mortality risk, such as climate change,
natural disasters and wars.

Although this paper makes progress in estimating the benefits of large reductions in mortality
risk, we can identify limitations and open avenues for future research. The theoretical framework
underlying our method considers the VSL values estimated from labor markets. As such, most
limitations of this VSL estimation approach also apply to the present method (Viscusi and Aldy,
2003). For instance, the VSL estimates may be subject to biases related to mismeasurement and
misperception of work-related fatality risks, and to selection on workers’ risk preferences. More-
over, we assume that compensations does not vary with the type of fatality, so that the willingness
to pay to avoid work-related fatality is the same as to any other cause. In practice, it is possible that
avoiding specific fatal diseases, such as COVID-19, may be associated with a larger willingness to
pay. Our method addresses the benefit of reducing one’s own mortality; in doing so, we overlook
the value individuals may place on (i) the lives of relatives, friends, and community members,
and (ii) staying healthy and avoiding potential COVID-19 sequelae. Finally, while we contend
that a theory-based approach is preferable to ignoring risk scale altogether, the accuracy of benefit
calculations could further improve with empirical estimates of the VSL over large risk ranges.
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A Proof of Proposition 1

Proposition 1. If the VSL does not vary with survival probability, then U (w, s) is convex in wealth (w).

Proof. As defined in the theoretical framework, the canonical representation defines expected util-
ity of wealth h over a binary lottery with probability of survival s

U (w, st) = sUa (w) + (1− s)Ud (w) (11)

with Ua (w) > Ua (w) and U ′a (w) > U ′d (w) ≥ 0 for all w.
We start by deriving two identities that are useful in this proof: (12) and (16). First, we can

express the change in utility from a change in s, from sI to sF , holding wealth level at some value
w̄. Applying (11), after some algebraic manipulation, yields

U (w̄, sI) = U (w̄, sI)− U (w̄, sF ) + U (w̄, sF )

= sFUa (w̄) + (1− sF )Ud (w̄)− (sF − sI) (Ua (w̄)− Ud (w̄))

= U (w̄, sF )− (sF − sI) ∆U (w̄)

U (w̄, sI) = U (w̄, sI) + (sF − sI) ∆U (w̄) (12)

where ∆U (w) ≡ Ua (w)− Ud (w).
Second, for a discrete risk reduction from s0 to s1 > s0, note that holding the VSL fixed implies

that

w1 = w0 − V (s1 − s0) (13)

Consider a convex combination

w̃ = λw0 + (1− λ)w1 (14)

with λ ∈ [0, 1]. Applying the fixed VSL equation (13) into (14), we have

w̃ = λw0 + (1− λ) (w0 − V (s1 − s0))

w̃ = w0 − (1− λ)V (s1 − s0) (15)

Then, evaluate (13) with a change from s0 to some s̃ and apply (15) to obtain
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w̃ = w0 − V (s̃− s0)

w0 − (1− λ)V (s1 − s0) = w0 − V (s̃− s0)

s̃− s0 = (1− λ) (s1 − s0) (16)

With identities (12) and (16), we can proceed with the proof. In equilibrium, changes in s are
compensated by a variation in w, so that

U (w0, s0) = U (w̃, s̃) (17)

and

U (w̃, s̃) = U (w1, s1) (18)

We change the level risk level to s0 on the the right-hand side of (17) using identity (12)

U (w0, s0) = U (w̃, s0) + (s̃− s0) ∆U (w̃)

U (w0, s0) = U (w̃, s0) + (1− λ) (s1 − s0) ∆U (w̃) (19)

where the last step used (16). Similarly, change the level risk level to s0 by applying (12) to both
sides of (18).

U (w1, s0) + (s1 − s0) ∆U (w1) = U (w̃, s0) + (s̃− s0) ∆U (w̃)

U (w1, s0) = U (w̃, s0) + (s̃− s0) ∆U (w̃)− (s1 − s0) ∆U (w1)

U (w1, s0) = U (w̃, s0) + (1− λ) (s1 − s0) ∆U (w̃)− (s1 − s0) ∆U (w1)

U (w1, s0) = U (w̃, s0) + (s1 − s0) [(1− λ) ∆U (w̃)−∆U (w1)] (20)

in which we used (16) from the third to the fourth line. Multiplying both sides of (19) by λ, both
sides of (20) by (1− λ), and summing them, it follows that the left-hand side of the resulting
equality is

λU (w0, s0) + (1− λ)U (w1, s0) (21)

while the right-hand side is
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λ {U (w̃, s0) + (1− λ) (s1 − s0) ∆U (w̃)}+ (1− λ) {U (w̃, s0) + (s1 − s0) [(1− λ) ∆U (w̃)−∆U (w1)]}

=U (w̃, s0) + (1− λ) (s1 − s0) ∆U (w̃)− (1− λ) {(s1 − s0) ∆U (w1)}

=U (w̃, s0) + (1− λ) (s1 − s0) [∆U (w̃)−∆U (w1)] (22)

The last term within square brackets can be written as

∆U (w̃)−∆U (w1) = [Ua (w̃)− Ua (w1)]− [Ud (w̃)− Ud (w1)] (23)

Both terms on the right-hand side of (23) are positive by monotonicity of Ua and Ud. Since
U ′a (w) > U ′d (w) ∀w, it follows that Ua (w̃) − Ua (w1) > Ud (w̃) − Ud (w1). Hence, from the equality
of expressions (21) and (22), plugging in the definition of w̃ (Eq. 14), we conclude that

λU (w0, s0) + (1− λ)U (w1, s0) > U (λw0 + (1− λ)w1, s0)

thus proving that U is convex in w. In other words, extrapolating benefits linearly is equivalent
to assuming that agents have increasing marginal utility of consumption and, thus, risk-loving
preferences.

B Additional information

In this Appendix we present additional details on the statistics and results. Tables B.1 and B.2
display country statistics used for the estimation of the benefits of social distancing. Tables B.3
and B.4 show the estimated benefits under each method and for each country, including the United
States and Brazil.

Figure B.1 is similar to Figure 3 and displays the age group-specific benefits and the respective
distributions of mortality and population for Brazil. We note that the key aspects in the analysis for
the United States still hold for Brazil: individuals aged 50 or above face high baseline mortality
and experience the most benefits from social distancing. Despite having a younger population,
the composition of benefits for Brazil is similar to the United States. One difference between these
cases, however, is that the benefits are maxed out in Brazil for age group 80 or above; this occurs
both because of the larger risks Brazilian seniors are exposed at the baseline and the higher value
of VSL as a share of income estimated in the literature.

We compare the results between log-utility assuming ρ = 1 for all countries, and CRRA, using
estimated values of ρ in Gandelman and Hernández-Murillo (2015). Figure B.2 shows the results
based on age-specific risks under each method. As expected, the difference of estimates between
log-utility and CRRA is larger when ρ is far from 1. However, we highlight that these differences
are usually small, except perhaps when ρ is close to zero.
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Figure B.1: Benefits with age-specific risks for Brazil
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Table B.1: Statistics for other countries.

COVID-19 deaths
Country Population Unmitigated Social dist. GNI pc VSL s̄ ρ

Albania 2.88 658 321 13.35 1.61 0.99830 0.1
Argentina 45.20 566 294 19.87 2.40 0.99725 1.2
Australia 25.50 712 343 50.05 6.05 0.99870 1.2
Austria 9.01 831 391 55.30 6.68 0.99851 1.1
Azerbaijan 10.14 425 237 17.10 2.07 0.99711 1.8
Bangladesh 164.69 387 271 4.57 0.55 0.99669 1.3
Belarus 9.45 706 343 19.24 2.32 0.99631 0.1
Belgium 11.59 940 495 51.74 6.25 0.99833 1.6
Benin 12.12 235 172 2.41 0.29 0.99385 0.2
Bolivia 11.67 417 229 7.67 0.93 0.99545 0.2
Bosnia & Herzeg. 3.28 756 361 14.58 1.76 0.99789 0.7
Botswana 2.35 303 212 18.00 2.17 0.99483 0.9
Bulgaria 6.95 843 392 22.30 2.69 0.99667 1.1
Burundi 11.89 180 138 0.75 0.09 0.99239 2.2
Cameroon 26.55 201 151 3.70 0.45 0.99182 0.8
Canada 37.74 852 437 47.59 5.75 0.99854 0.8
Chile 19.12 611 315 24.19 2.92 0.99799 1.1
Croatia 4.11 863 401 27.18 3.28 0.99798 0.3
Dominican Rep. 10.85 431 236 16.95 2.05 0.99610 0.3
Ecuador 17.64 427 234 11.42 1.38 0.99692 1.4
El Salvador 6.49 465 250 7.86 0.95 0.99541 0.5
Estonia 1.33 841 394 34.97 4.23 0.99748 0.5
Finland 5.54 815 387 48.58 5.87 0.99830 0.6
France 65.27 1106 616 46.36 5.60 0.99821 1.4
Georgia 3.99 687 334 11.50 1.39 0.99631 0.9
Germany 83.78 1039 530 54.56 6.59 0.99831 0.8
Ghana 31.07 239 174 4.65 0.56 0.99385 0.6
Greece 10.42 933 430 29.67 3.58 0.99836 1.1
Honduras 9.90 317 186 4.79 0.58 0.99652 0.9
India 1380.00 432 296 7.68 0.93 0.99553 0.9
Indonesia 273.52 423 279 12.67 1.53 0.99621 1.2
Ireland 4.94 653 321 67.05 8.10 0.99859 0.3

Notes: Population in millions. COVID-19 deaths per 100,000 individuals. GNI pc is the gross
national income per capita in thousand US dollars. VSL, in million US dollars, projected follow-
ing Viscusi and Masterman (2017) and updated using the latest GNI. Dollar values are adjusted
by purchase power parity for 2018. s̄ is the average baseline, one-year survival probability for
individuals with age between 15 and 60. ρ is the relative risk aversion coefficient. See section
3.2 for data sources.
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Table B.2: Statistics for other countries, part 2.

COVID-19 deaths
Country Population Unmitigated Social dist. GNI pc VSL s̄ ρ

Japan 126.48 1070 480 44.38 5.36 0.99877 0.4
Kyrgyz Rep. 6.52 315 189 3.78 0.46 0.99623 1.8
Lao PDR 7.28 298 209 7.09 0.86 0.99536 0.4
Lithuania 2.72 872 405 34.32 4.15 0.99605 1.2
Madagascar 27.69 228 168 1.84 0.22 0.99463 0.7
Malaysia 32.37 455 291 30.65 3.70 0.99695 1.9
Mexico 128.93 435 237 19.34 2.34 0.99658 0.8
Moldova 4.03 586 298 7.62 0.92 0.99586 1.2
Montenegro 0.63 682 333 20.93 2.53 0.99768 2.1
Mozambique 31.26 204 153 1.43 0.17 0.99092 1.1
Myanmar 54.41 408 270 6.50 0.79 0.99496 1.0
Netherlands 17.13 822 384 56.89 6.87 0.99870 0.1
New Zealand 4.82 711 341 39.41 4.76 0.99854 1.1
North Macedonia 2.08 642 318 15.67 1.89 0.99778 1.3
Norway 5.42 746 356 68.31 8.25 0.99866 1.2
Panama 4.31 476 255 23.55 2.85 0.99724 0.2
Paraguay 7.13 384 214 13.22 1.60 0.99648 0.5
Peru 32.97 473 253 13.71 1.66 0.99716 1.4
Poland 37.85 775 387 30.01 3.63 0.99739 0.4
Portugal 10.20 922 424 32.68 3.95 0.99836 1.1
Russia 145.93 701 341 26.90 3.25 0.99494 0.6
Senegal 16.74 221 164 3.67 0.44 0.99550 1.9
Serbia 8.74 758 360 16.54 2.00 0.99736 0.3
Slovenia 2.08 850 397 37.45 4.52 0.99840 0.8
South Africa 59.31 364 245 13.25 1.60 0.99136 1.3
South Korea 51.27 730 353 40.09 4.84 0.99866 0.3
Sri Lanka 21.41 642 399 13.11 1.58 0.99750 0.7
Switzerland 8.65 821 386 68.82 8.32 0.99889 1.2
Tajikistan 9.54 240 155 4.05 0.49 0.99679 1.2
Tanzania 59.73 197 149 3.14 0.38 0.99423 1.3
Uganda 45.74 156 123 1.97 0.24 0.99283 0.7
Ukraine 43.73 739 356 9.03 1.09 0.99526 0.4
United Kingdom 67.89 872 444 45.35 5.48 0.99839 1.0
Uruguay 3.47 727 368 21.94 2.65 0.99739 0.9
Uzbekistan 33.47 322 193 8.81 1.06 0.99669 3.0
Venezuela 28.44 446 242 17.90 2.16 0.99626 2.1
Vietnam 97.34 528 330 6.93 0.84 0.99672 1.1
Zimbabwe 14.86 219 163 3.02 0.36 0.98998 0.0

Notes: Population in millions. COVID-19 deaths per 100,000 individuals. GNI pc is the gross
national income per capita in thousand US dollars. VSL, in million US dollars, projected follow-
ing Viscusi and Masterman (2017) and updated using the latest GNI. Dollar values are adjusted
by purchase power parity for 2018. s̄ is the average baseline, one-year survival probability for
individuals with age between 15 and 60. ρ is the relative risk aversion coefficient. See section
3.2 for data sources.
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Table B.3: Benefits of social distancing as percentage of the GNI per capita.

Country Linear Log-utility CRRA
Age-specific Uniform Age-specific Uniform

United States 42.2 23.3 38.6 21.5 36.0
Brazil 43.5 19.5 35.5 20.8 38.0
Albania 37.8 20.7 31.8 24.8 37.1
Argentina 30.6 16.2 26.6 15.5 25.9
Australia 41.9 21.3 34.5 20.5 33.6
Austria 49.3 25.1 39.4 24.7 38.8
Azerbaijan 21.1 13.2 19.1 11.4 17.7
Bangladesh 13.3 8.7 12.5 8.3 12.3
Belarus 40.1 21.9 33.4 26.7 39.9
Belgium 49.8 24.8 39.7 22.1 36.0
Benin 7.1 5.1 6.9 6.0 7.1
Bolivia 21.6 11.5 19.5 13.5 21.3
Bosnia & Herzeg. 44.1 24.1 36.1 25.7 38.1
Botswana 10.3 7.2 9.9 7.2 9.9
Bulgaria 49.5 26.3 39.7 25.9 39.2
Burundi 4.8 3.7 4.7 3.2 4.6
Cameroon 5.5 4.3 5.4 4.4 5.4
Canada 47.2 24.0 38.0 25.0 39.3
Chile 33.9 18.1 29.0 17.6 28.5
Croatia 50.7 26.4 40.4 30.3 47.2
Dominican Rep. 22.6 12.5 20.3 14.2 21.8
Ecuador 22.3 12.4 20.1 11.5 19.3
El Salvador 24.2 13.1 21.6 14.4 22.8
Estonia 49.7 25.1 39.7 27.9 44.1
Finland 48.2 25.5 38.7 28.3 42.3
France 55.4 26.2 43.1 23.9 39.6
Georgia 38.7 21.0 32.5 21.6 33.2
Germany 57.2 27.8 44.1 29.2 46.5
Ghana 7.3 5.5 7.1 5.9 7.2
Greece 56.2 27.4 43.6 26.9 42.9
Honduras 15.1 8.9 14.0 9.0 14.1
India 15.5 10.2 14.4 10.3 14.5
Indonesia 16.4 10.8 15.2 10.3 14.9
Ireland 37.7 19.8 31.7 22.5 35.5
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Table B.4: Benefits of social distancing as percentage of the GNI per capita, part 2.

Country Linear Log-utility CRRA
Age-specific Uniform Age-specific Uniform

Japan 66.9 31.5 49.4 35.3 57.6
Kyrgyz Rep. 14.2 9.3 13.3 8.1 12.7
Lao PDR 10.1 7.1 9.7 8.1 10.0
Lithuania 52.8 26.2 41.5 24.9 39.7
Madagascar 6.8 5.0 6.6 5.3 6.7
Malaysia 18.8 11.6 17.2 9.9 16.0
Mexico 22.6 12.8 20.3 13.4 20.8
Moldova 32.1 18.8 27.7 18.0 27.0
Montenegro 38.4 21.2 32.3 17.1 27.7
Mozambique 5.7 4.3 5.5 4.2 5.5
Myanmar 15.6 10.5 14.5 10.5 14.5
Netherlands 49.5 25.3 39.5 30.3 48.7
New Zealand 42.0 21.7 34.6 21.0 33.7
North Macedonia 35.8 20.4 30.4 19.0 29.0
Norway 44.1 22.7 36.0 21.9 35.0
Panama 25.5 13.7 22.6 16.0 25.0
Paraguay 19.4 11.0 17.7 12.3 18.6
Peru 25.1 13.9 22.3 12.8 21.3
Poland 43.9 23.4 35.9 26.7 40.6
Portugal 55.7 27.7 43.3 27.3 42.6
Russia 40.1 21.6 33.4 23.3 35.5
Senegal 6.5 4.8 6.3 4.2 6.1
Serbia 43.6 23.7 35.9 27.6 41.6
Slovenia 50.7 26.1 40.3 27.1 41.7
South Africa 13.3 9.0 12.5 8.5 12.2
South Korea 43.2 23.2 35.4 26.9 40.9
Sri Lanka 27.6 16.2 24.3 17.5 25.3
Switzerland 49.0 24.8 39.2 23.7 37.7
Tajikistan 9.7 6.8 9.2 6.6 9.2
Tanzania 5.5 4.2 5.3 4.0 5.3
Uganda 3.8 3.0 3.7 3.2 3.7
Ukraine 42.0 22.8 34.8 25.6 38.7
United Kingdom 48.1 24.0 38.6 23.8 38.4
Uruguay 40.7 20.2 33.7 20.6 34.3
Uzbekistan 14.6 9.6 13.6 7.3 12.1
Venezuela 23.3 13.4 20.9 11.1 18.9
Vietnam 22.7 13.3 20.5 13.0 20.2
Zimbabwe 6.3 4.7 6.1 5.5 6.3
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Figure B.2: Comparison of benefit estimation using different methods for each country. Relative
risk aversion (ρ) in parentheses.
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